Spelling suggestions: "subject:"cytochrome 450."" "subject:"cytochrome p450.""
1 |
Ultrastructural localisation of drug-metabolising enzymes within lung and their role in the development of cell-specific lung injuryLee, Matthew John January 1994 (has links)
No description available.
|
2 |
Phase I and II enzyme induction and inhibition by secoisolariciresinol diglucoside and it's aglyconeBoyd, Erin Margaret Rose 27 April 2007
The flaxseed lignan, secoisolariciresinol diglucoside (SDG), and its aglycone, secoisolariciresinol (SECO), have demonstrated benefits in the treatment and/or prevention of cancer, diabetes and cardiovascular disease. In order for the lignans to be used therapeutically, the safety of administration alone and in conjunction with other drugs must be determined. The primary cause of drug interactions is induction and inhibition of cytochrome P450 (CYP) and phase II enzymes. A preliminary screen was conducted to assess the potential for SECO and SDG to cause CYP inhibition. A method was established to assess for CYP, glutathione-S-transferase (GST) and uridine diphosphate-glucuronosyltransferase (UGT) induction in rat primary hepatocytes by real-time reverse transcription-polymerase chain reaction (RT-PCR).<p>Preliminary assessments of inhibition measured the metabolism of testosterone to 6β-, 16α- and 2α-hydroxytestosterone, which corresponds to CYP3A, 2B/2C11 and 2C11 enzyme activity in rat hepatic microsomes by a validated high performance liquid chromatography (HPLC) method. Irreversible inhibition studies found that SDG is not an inhibitor of these isoforms up to 1000 μM. Secoisolariciresinol caused reversible inhibition of 6β-hydroxytestosterone at all testosterone concentrations, with an IC50 (inhibitor concentration causing 50% inhibition of enzyme) between 400 and 800 μM. Over the range of SECO concentrations tested, 10 1600 μM, 6β-hydroxytestosterone formation was reduced to 95 29% of control levels at 50 μM testosterone.<p>Secoisolariciresinol caused a concentration-dependent increase in 16α-hydroxytestosterone formation at 50 μM testosterone. At 10 μM SECO, there was 90% of control activity, but at 1600 μM metabolite formation was 172% of control. The formation of 2α-hydroxytestosterone was not affected at any testosterone or inhibitor concentration. Thus, SECO appears to be a CYP3A inhibitor and a CYP2B activator at testosterone KM levels. The mechanism of reversible inhibition could not be determined due to the possibility of non-Michaelis-Menten kinetics observed with CYP3A inhibition and CYP2B activation. <p>The gold standard in vitro model to assess induction is primary hepatocytes. A method was established that allowed for the isolation and culture of these cells. Positive controls caused induction of CYP mRNA levels after 24 hours treatment, demonstrating the ability of enzyme induction in the test system. Primers for real-time RT-PCR were designed that amplified CYP1A1, 1A2, 2B1, 2C11, 2C13, 2D1, 2D2, 3A1 and 3A2, GSTA2, A5 and P1, and UGT1A1, 1A7, 1A8, 2B1 and 2B12 genes. A preliminary assessment of transcriptional upregulation of drug metabolizing enzymes by SECO and SDG can be assessed in isolated and cultured rat primary hepatocytes.
|
3 |
Phase I and II enzyme induction and inhibition by secoisolariciresinol diglucoside and it's aglyconeBoyd, Erin Margaret Rose 27 April 2007 (has links)
The flaxseed lignan, secoisolariciresinol diglucoside (SDG), and its aglycone, secoisolariciresinol (SECO), have demonstrated benefits in the treatment and/or prevention of cancer, diabetes and cardiovascular disease. In order for the lignans to be used therapeutically, the safety of administration alone and in conjunction with other drugs must be determined. The primary cause of drug interactions is induction and inhibition of cytochrome P450 (CYP) and phase II enzymes. A preliminary screen was conducted to assess the potential for SECO and SDG to cause CYP inhibition. A method was established to assess for CYP, glutathione-S-transferase (GST) and uridine diphosphate-glucuronosyltransferase (UGT) induction in rat primary hepatocytes by real-time reverse transcription-polymerase chain reaction (RT-PCR).<p>Preliminary assessments of inhibition measured the metabolism of testosterone to 6β-, 16α- and 2α-hydroxytestosterone, which corresponds to CYP3A, 2B/2C11 and 2C11 enzyme activity in rat hepatic microsomes by a validated high performance liquid chromatography (HPLC) method. Irreversible inhibition studies found that SDG is not an inhibitor of these isoforms up to 1000 μM. Secoisolariciresinol caused reversible inhibition of 6β-hydroxytestosterone at all testosterone concentrations, with an IC50 (inhibitor concentration causing 50% inhibition of enzyme) between 400 and 800 μM. Over the range of SECO concentrations tested, 10 1600 μM, 6β-hydroxytestosterone formation was reduced to 95 29% of control levels at 50 μM testosterone.<p>Secoisolariciresinol caused a concentration-dependent increase in 16α-hydroxytestosterone formation at 50 μM testosterone. At 10 μM SECO, there was 90% of control activity, but at 1600 μM metabolite formation was 172% of control. The formation of 2α-hydroxytestosterone was not affected at any testosterone or inhibitor concentration. Thus, SECO appears to be a CYP3A inhibitor and a CYP2B activator at testosterone KM levels. The mechanism of reversible inhibition could not be determined due to the possibility of non-Michaelis-Menten kinetics observed with CYP3A inhibition and CYP2B activation. <p>The gold standard in vitro model to assess induction is primary hepatocytes. A method was established that allowed for the isolation and culture of these cells. Positive controls caused induction of CYP mRNA levels after 24 hours treatment, demonstrating the ability of enzyme induction in the test system. Primers for real-time RT-PCR were designed that amplified CYP1A1, 1A2, 2B1, 2C11, 2C13, 2D1, 2D2, 3A1 and 3A2, GSTA2, A5 and P1, and UGT1A1, 1A7, 1A8, 2B1 and 2B12 genes. A preliminary assessment of transcriptional upregulation of drug metabolizing enzymes by SECO and SDG can be assessed in isolated and cultured rat primary hepatocytes.
|
4 |
A mechanistic study of how adenovirus infection alters the expression and function of hepatic cytochrome P450 3AWonganan, Piyanuch 14 December 2010 (has links)
Recombinant adenoviruses, commonly used in gene therapy and vaccine applications, compromise the expression and function of hepatic CYP3A for 14 days. When given with docetaxel (DTX), plasma clearance of DTX (3.38 ± 0.22 l/kg.h) was significantly lower than those given DTX alone (6.41 ± 1.10 l/kg.h). The area under the plasma concentration-time curve of DTX in rats given virus (2,987.37 ± 197.97 ng/ml.h) was significantly greater than those given drug alone (1,666.59 ± 317.04 ng/ml.h). The virus extended the half-life of DTX three-fold. This may explain why adenoviral vectors improve chemotherapy. PEGylation of the virus reduced interleukin-6 (IL-6), IL-12, tumor necrosis factor alpha (TNF-α), aspartate transaminase (AST) and lactate dehydrogenase (LDH) levels in mice and non-human primates. PEGylation dramatically reduced transduction efficiency of virus in the baboon liver and did not alter hepatic transgene expression in the mouse. Unmodified and PEGylated virus (3 x 1012 vp/kg) reduced hepatic CYP3A4 protein by 60% and 40%, respectively 96 hours after virus administration. Catalytic activity was decreased by 55% and 45% with respect to an untreated control by the native and PEGylated viruses respectively. This suggests that changes in hepatic CYP3A during infection is not entirely due to the immune response and these observed effects most likely occur in humans. The effects of adenovirus on hepatic CYP3A expression and function in mice, however, resolved at a faster rate than that in baboons. HC-04 cells are a suitable in vitro model to study virus infection and hepatic CYP3A function. A panel of adenoviruses inhibited CYP3A catalytic activity and induced changes in expression and distribution of retinoid X receptor alpha (RXRα), pregnane X receptor (PXR) and constitutive androstane (CAR) receptors. Virus (1.5 x 1011 vp) inhibited CYP3A in the mouse. When the ability of the virus to bind to integrins was removed, changes in CYP were not detected. Treatment with a RGD peptide, that binds to integrins, reduced CYP3A activity in a manner similar to the virus. Silencing of β3 and β5 integrins also resolved changes in CYP3A activity during infection, suggesting that simple engagement of integrin receptors can initiate changes in CYP3A. / text
|
5 |
Heterologous expression and functional properties of plaice and human cypia-family enzymesMatheson, Johanne January 1997 (has links)
No description available.
|
6 |
The role of a liver testis axis in the development of Leydig cell hyperplasia and tumoursCoulson, Michelle January 2002 (has links)
No description available.
|
7 |
Brain and hepatic microsomal metabolism of phorateLucento, Marissa 07 August 2020 (has links)
Phorate (O,O-diethyl S-ethylthiomethyl phosphorodithioate) is a toxic organophosphate anticholinesterase insecticide. Organophosphate insecticides can cause respiratory depression and seizures due to acetylcholinesterase inhibition. Inhibited acetylcholinesterase cannot break down the neurotransmitter, acetylcholine; thus, causing an overload of acetylcholine in synapses and neuromuscular junctions. Oxidative desulfuration, from metabolism by cytochrome P450 enzymes, converts the P=S phosphorothionate group on phorate to the P=O oxon group. Electrophilic oxon groups attack the active site on acetylcholinesterase, inducing the toxicity associated with organophosphate insecticides. Possible further bioactivation to phorate-oxon-sulfoxide and phorate-oxon-sulfone near the site of acetylcholinesterase in the brain may increase acetylcholinesterase inhibitory potency. Adult male Sprague-Dawley rat brain and liver microsomes were used to determine the proportions of the phorate metabolites formed through bioactivation. Phorate-sulfoxide was produced in much greater proportion than any other metabolite, which may contribute to the delay observed in phorate toxicity as it takes longer to produce phorate-oxon, phorate-oxon-sulfoxide, or phorate-oxon-sulfone metabolites.
|
8 |
Characterization of Cytochrome P450 and a Putative Cytochrome P450 Gene in Drosophila melanogaster / Cytochrome P450 in Drosophila melanogasterPursey, Jane 06 1900 (has links)
Cytochrome P450 was examined in both insecticide resistant and insecticide susceptible strains of Drosophila melanogaster. Much higher levels were observed in the resistant strain IIID when compared to the susceptible strain Canton S. This increase appeared to be the result of an overproduction of a few existing forms. Two heme-staining microsomal proteins found in strain IIID were identified as putative cytochrome P450 isozymes. Polyclonal antibodies produced against these two proteins were used in the immunoanalysis of microsomal proteins from both strains. A lambda gtll cDNA expression vector library was created by inserting cDNA fragments from a Drosophila lambda gt10 library into lambda gtll arms. The library was screened with the polyclonal antiserum. Three clones were isolated, of which one, gtll-Al, was most highly reactive with the antiserum. Analysis of the gtll-Al lysogen indicated a 130 kd fusion protein was produced of which 16 kd was coded for by the cDNA insert. A .5 kb cDNA insert was isolated from the clone as part of a 1.5 kb Kpnl/EcoRl fragment and was used in the analysis of Drosophila genomic DNA and total RNA. Southern analysis revealed an EcoRl polymorphism existed between strain IIID and Canton S. RNA analysis suggested strain IIID produced more coding message for the Al insert in the larval and adult stages than did Canton S. / Thesis / Master of Science (MSc)
|
9 |
Évaluation de la génotoxicité des contaminants environnementaux, production de lignées bio-senseurs et mesure de l'activité enzymatique du cytochrome P450 2E1 dans les cellules d'hépatome humain HepaRG / Evaluation of genotoxicity of environmental contaminants,production of bio-sensor cell lines and measurment of CYP2E1 enzymatic activityQuesnot, Nicolas 30 April 2015 (has links)
L'exposition humaine aux contaminants environnementaux est inévitable du fait de leur présence dans l'eau, l'air et l'alimentation. La plupart d'entre eux sont reconnus comme étant mutagènes et/ou carcinogènes chez l'animal mais ils sont souvent seulement suspectés de l'être chez l'Homme. Le manque de connaissance vis-à-vis des substances chimiques a conduit l'UE à lancer le programme REACH avec l'objectif d'évaluer la toxicité d'environ 30 000 molécules. Cette évaluation nécessiterait l'utilisation de plus de 4 millions d'animaux et la pertinence controversée de ces modèles pourrait aboutir à des conclusions discutables. Les méthodes in vitro sont considérées comme une alternative potentielle à l'expérimentation animale. Néanmoins, le choix du modèle cellulaire et des conditions expérimentales restent à préciser. Les hépatocytes humains en culture primaire représentent le modèle le plus pertinent en toxicologie malgré de nombreuses contraintes (variabilité inter-individuelle, changements phénotypique précoces, obtention aléatoire). La lignée HepaRG constitue une alternative intéressante puisque ces cellules peuvent proliférer de manière illimitée et expriment les EMXs à des niveaux proches des hépatocytes humains. L'expression de ces enzymes restant stable pendant plusieurs semaines, ce modèle permet l'évaluation du risque lié à une exposition chronique aux contaminents environnementaux, essentielle en génotoxicité. Il reste cependant nécessaire de caractériser plus amplement cette lignée vis-à-vis des EMXs et de l'adapter aux tests de toxicologie actuels. Dans ces travaux, nous avons développé un test haut débit utilisant la quantification in situ des histones phosphorylées γH2AX avec l'objectif de pouvoir évaluer le risque génotoxique d'une exposition unique ou répétée aux contaminants environnementaux. Ce test a été validé avec succès par l'évaluation de la génotoxicité associée à une exposition de 1, 7 et 14 jours pour 10 polluants. Nous avons ensuite généré des lignées recombinantes biosenseurs, dérivées du modèle HepaRG et permettant d'identifier les xénobiotiques altérant l'expression transcriptionnelle des EMXs. Par transfection transitoire, nous avons dans un premier temps validé à l'aide d'inducteurs prototypiques et de nos 10 contaminants nos constructions contenant le gène rapporteur de la luciférase sous le contrôle des promoteurs de plusieurs EMXs. Ensuite, nous avons généré des lignées stables exprimant la GFP comme gène rapporteur et permettant une détection rapide des xénobiotiques capables d'induire l'expression des EMXs. Parmi les EMXs, le CYP2E1 joue un rôle important en santé humaine. En effet, cette enzyme induite dans certaines conditions physiopathologiques comme le diabète et l'obésité est responsable de l'activation de nombreux procarcinogènes et est à l'origine d'une production d'EROs. Les cellules HepaRG pourraient constituer un modèle pertinent pour l'étude du CYP2E1. Cependant, l'expression et l'activité de cette enzyme au sein de ce modèle nécessitent d'être mieux caractérisées en regard des données discordantes de la littérature. A l'aide de la chlorzoxazone, un marqueur spécifique de l'activité du CYP2E1, nous avons démontré l'influence du métabolisme de phase II sur l'activité apparente du CYP2E1. Nous proposons ici quelques recommandations afin de mieux quantifier l'activité du CYP2E1 sur les hépatocytes humains et sur le modèle HepaRG à l'aide la chlorzoxazone. / Human exposure to toxic chemicals is virtually unavoidable due to contamination of air, water and food. A number of environmental contaminants are recognized as mutagenic and/or carcinogenic in animal but they are often only suspected to have similar effects in Humans. The lack of knowledge on the effects of most industrial-made chemicals has led the EU to launch the REACH program with the aim of evaluating the toxicity of more than 30.000 molecules. Such evaluation would require the use of at least 4 millions of animals for an estimated cost of 2.8 billions €. While the relevance of these in vivo models remains controversial.
|
10 |
Cytochrome P450 Binding and Bioactivation of Tumor-targeted Duocarmycin AgentsBart, A.G., Morais, Goreti R., Vangala, Venu R., Loadman, Paul, Pors, Klaus, Scott, E.E. 01 October 2021 (has links)
No / Duocarmycin natural products are promising anti-cancer cytotoxins but too potent for systemic use. Re-engineering of the duocarmycin scaffold has enabled the discovery of prodrugs designed for bioactivation by tissue-specific cytochrome P450 enzymes. Lead prodrugs bioactivated by both P450 isoforms CYP1A1 and CYP2W1 have shown promising results in xenograft studies, however to fully understand the potential of these agents it is desirable to compare dual-targeting compounds with isoform-selective analogs. Such redesign requires insight into the molecular interactions with these P450 enzymes. Herein binding and metabolism of the individual stereoisomers of the indole-based duocarmycin prodrug ICT2700 and a nontoxic benzofuran analog ICT2726 were evaluated with CYP1A1 and CYP2W1, revealing differences exploitable for drug design. While enantiomers of both compounds bound to and were metabolized by CYP1A1, the stereochemistry of the chloromethyl fragment was critical for CYP2W1 interactions. CYP2W1 differentially binds the S enantiomer of ICT2726 and its metabolite profile could potentially be used as a biomarker to identify CYP2W1 functional activity. In contrast to benzofuran-based ICT2726, CYP2W1 differentially binds the R isomer of the indole-based ICT2700 over the S stereoisomer. Thus the ICT2700 R configuration warrants further investigation as a scaffold to favor CYP2W1-selective bioactivation. Furthermore, structures of both duocarmycin S enantiomers with CYP1A1 reveal orientations correlating with nontoxic metabolites and further drug design optimization could lead to a decrease of CYP1A1 bioactivation. Overall, distinctive structural features present in the two P450 active sites can be useful for improving P450-and thus tissue-selective-bioactivation. Significance Statement Prodrug versions of the natural product duocarmycin can be metabolized by human tissue-specific cytochrome P450 enzymes 1A1 and 2W1 to form an ultrapotent cytotoxin and/or high affinity 2W1 substrates to potentially probe functional activity in situ The current work defines the binding and metabolism by both P450 enzymes to support the design of duocarmycins selectively activated by only one human P450 enzyme. / National Institutes of Health and Yorkshire Cancer Research Program Grant (B381PA)
|
Page generated in 0.1163 seconds