• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the cellulose-digesting Cytophaga of the soil /

Meyer, Richard Charles January 1961 (has links)
No description available.
2

Characterization and control of Cytophaga psychrophila (Borg) the causative agent of low temperature disease in young coho salmon (Oncorhynchus kisutch) /

Holt, Richard Allen. January 1972 (has links)
Thesis (M.S.)--Oregon State University, 1972. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
3

Cellulose degradation system of Cytophaga hutchinsonii

Liu, Chao-Kuo January 2012 (has links)
In this project, Cytophaga hutchinsonii, an aerobic gliding bacterium with cellulose-degrading ability, was studied, since its cellulase system was unknown and might be very different from those of other cellulose-degrading species. Only ß-1,4- endoglucanases and non-specific ß-glucosidases were found in the C. hutchinsonii genome sequence, whereas specific exoglucanases were apparently absent. Almost all putative cellulases were composed of catalytic domains only, without carbohydrate-binding modules. Samples from C. hutchinsonii cultures were analyzed by using TLC and colorimetric assays. Glucose was detected in the cellobiose grown culture, but not in cellulose-grown cultures, suggesting that cellobiose is hydrolyzed extracellularly rather than being directly assimilated, and that cellulose may not be degraded via cellobiose. Also, cellobiose-based cultures caused greater acidification of the medium than glucose or cellulose grown cultures. Nine putative cellulases were expressed in four bacterial strains. In some cases, expression was toxic to host cells. The crude lysates were tested for endoglucanase, specific exoglucanase or nonspecific ß-glucosidase activity. CHU_1280 and CHU_1842 showed apparent endoglucanase activity when expressed in Citrobacter freundii. Four putative GH family 3 ß-glucosidases with similar conserved domains were expressed in Escherichia coli JM109 and E. coli BL21(DE3)pLysS. One of these, CHU_2268, was found to possess MUC-degrading ability. This suggests that CHU_2268 may be the 'missing' exoglucanase in C. hutchinsonii. Another two ß-glucosidases, CHU_2273 and CHU_3784, possessed only MUG-degrading activity.
4

Isolation from soil and characterization of a denitrifying Cytophaga capable of reducing nitrous oxide in the presence of acetylene and sulfide

Adkins, Anne M. January 1985 (has links)
This study investigated possible reasons for the failure of the acetylene inhibition assay of denitrification in highly reducing environments and resulted in the isolation of a denitrifying Cytophaga from soil enriched by anaerobic incubation with glucose, nitrous oxide (N(,2)O), acetylene (C(,2)H(,2)), and sulfide (S('2-)). Such soil enrichments and pure cultures of the isolated Cytophaga (Is-11) reduced N(,2)O rapidly even in the presence of a normally inhibitory concentration of C(,2)H(,2) (4 kPa), providing S('2-) was present 8.0 umol (g soil)('-1) or 0.4 umol (mL culture)('-1) . The observed reaction appears to be unique to this soil Cytophaga since other organisms tested, using the same or similar experimental conditions, failed to show this response. / The isolate was characterized, after extensive comparative studies with five Cytophaga johnsonae strains, as a pigmented, Gram-negative, non-motile, gliding filamentous bacillus. Although these features established a taxonomic link with the family Cytophagaceae, the inability of Is-11 to digest chitin and DNA base composition of about 42.5 mol% (G+C) make the organism's specific affiliation uncertain.
5

Isolation from soil and characterization of a denitrifying Cytophaga capable of reducing nitrous oxide in the presence of acetylene and sulfide

Adkins, Anne M. January 1985 (has links)
No description available.
6

The occurrence of the bacterium Capnocytophaga in the tooth plague of canines

Dilegge, Sara Kate. January 2010 (has links)
Honors Project--Smith College, Northampton, Mass., 2010. / Includes bibliographical references (p. 91-95).
7

ISOLATION AND IDENTIFICATION OF FRESHWATER BACTERIA ANTAGONISTIC TO <i>GIARDIA INTESTINALIS</i>

REVETTA, RANDY PRIMO 03 April 2006 (has links)
No description available.

Page generated in 0.0319 seconds