1 |
Estudo da estabilidade de eletrocatalisadores Pt/C e Pt-RuOx/C / Investigation on the stability of Pt/C and Pt-RuOx/C catalystsRufino, Élen Cristina Gonçalves 05 August 2011 (has links)
Neste trabalho, foram investigadas as modificações na estrutura e a estabilidade de eletrocatalisadores Pt/C e Pt-RuOx/C, preparados pela decomposição térmica de precursores poliméricos. Experimentos de varredura de potencial e experimentos com potencial fixo foram realizados com o objetivo de acelerar os mecanismos de degradação dos catalisadores. Para identificar e compreender os fatores que levaram a degradação dos catalisadores, foram realizados experimentos para determinação da área superficial eletroquimicamente ativa dos catalisadores, através da adsorção/oxidação de CO, análises dos catalisadores por difração de raios X (DRX) e análises das soluções por espectrometria de massa com fonte de plasma indutivamente acoplado (ICP-MS).Foram avaliadas as modificações na estrutura e a estabilidade dos eletrocatalisadores Pt/C e Pt-RuOx/C quando submetidos a 2000 varreduras de potencial em diferentes intervalos (i) 0,05-0,5 V; (ii) 0,05-0,7 V e (iii) 0,05-0,9 V na presença e na ausência de metanol e também quando submetidos a um potencial fixo por várias horas. Foi observado, de maneira geral, um aumento no tamanho dos cristalitos, dissolução dos componentes metálicos e uma redução da área superficial eletroquimicamente ativa. Os resultados obtidos na primeira parte do trabalho também mostraram que a degradação dos catalisadores foi maior na presença de metanol e que condições de potencial cíclico aceleram os mecanismos de degradação quando comparadas a condições de potencial fixo. Após uma melhor compreensão dos mecanismos de degradação, a segunda parte do trabalho foi voltada para investigação da influência de modificações no método Pechini durante a síntese dos eletrocatalisadores Pt-RuOx/C na estrutura e estabilidade destes catalisadores. Para isto, os catalisadores foram submetidos a varreduras de potencial entre 0,05-0,6 V e experimentos com potencial fixo em 0,6 V na presença de metanol. Para avaliar a influência das modificações no método de preparo na eletroatividade dos catalisadores, foram realizados testes em uma DMFC utilizando uma MEA (Membrane Electrode Assemblies) formada por ânodo Pt-RuOx/C / membrana de Nafion® 117 / cátodo Pt/C comercial (E-TEK). O estudo da estabilidade mostrou que o catalisador cuja mistura composta pelas resinas e suporte de carbono foi submetida à rotação em um moinho de bolas antes do tratamento térmico se mostrou bem mais estável que os demais catalisadores (submetidos ao ultrassom). Já os catalisadores preparados com uma única resina contendo Pt e Ru e submetidos ao ultrassom antes do tratamento térmico, mostraram os melhores resultados nos experimentos em condições operacionais em célula a combustível unitária. A terceira e última parte deste trabalho teve por objetivo investigar os efeitos da utilização do carbono Black Pearls 2000 como suporte na estabilidade e eletroatividade de eletrocatalisadores Pt-RuOx/C. Testes em uma DMFC e varreduras de potencial na presença de metanol foram realizados e os resultados comparados com os obtidos para os catalisadores sintetizados com carbono Vulcan XC-72. Os catalisadores sintetizados com carbono Black Pearls 2000 apresentaram maior área superficial eletroquimicamente ativa que os catalisadores preparados com carbono Vulcan XC-72 pelo mesmo procedimento, indicando uma melhor dispersão das partículas metálicas sobre o suporte, uma vez que a quantidade de Pt nos catalisadores foi mantida constante. Esta melhor dispersão das nanopartículas metálicas sobre o suporte resultou em maiores valores de densidade de potência e densidade de corrente em célula a combustível unitária operando com metanol na fase líquida. Para dois dos três catalisadores, o desempenho foi superior ao catalisador comercial da E-TEK. A dissolução dos componentes metálicos e a redução da área superficial eletroquimicamente ativa foi menor para os catalisadores preparados com carbono Black Pearls 2000 e o tamanho de cristalito não variou após 2000 varreduras de potencial. Todos estes resultados mostram uma maior estabilidade dos catalisadores preparados com este suporte. / In this work, changes in the structure and stability of the Pt/C and Pt-RuOx/C catalysts, prepared by the thermal decomposition of polymeric precursors, were investigated. Potential scans and constant potential experiments were carried out, to accelerate catalyst degradation mechanisms. To comprehend the catalyst degradation, determination of the electrochemical active surface area by means of the method based on the CO-stripping voltammetry curve, catalysts analyses by X-ray diffraction (XRD), and solution analyses by inductively coupled plasma mass spectrometry (ICP-MS) were accomplished.The changes in the structure and stability of Pt/C and Pt-RuOx/C electrocatalysts subjected to 2000 potential scans at different potential ranges (0.05-0.5, 0.05-0.7, and 0.05-0.9 V) were monitored in sulfuric acid solution, in the absence and in the presence of methanol. The influence of application of a constant potential for a prolonged time period was also investigated. As a general behavior, there was increase in particle size, dissolution of catalyst components, and reduction in the electrochemically active surface area. Catalyst degradation was more pronounced in the presence of methanol, and the cyclic potential conditions revealed higher degradation rate compared to the rate observed in constant potential conditions. After a better comprehension of the degradation mechanisms, the second part of this work focused on monitoring the influence of modifications made to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts on the structure and stability of these catalysts after they were subjected to a large number of potential scans between 0.05 and 0.6 V and at constant potential of 0.6V vs. RHE for a prolonged time period in sulfuric acid 0.5 mol L-1 and in methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion® 117 membrane together with the Pt-RuOx anode and an E-TEK cathode, in order to compare the catalytic activity of catalysts prepared by different methods. The stability study demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before being subjected to heat-treatment was more stable than the other prepared catalysts (subjected to ultrasound). The catalysts prepared with the single resin consisting of Pt and Ru, subjected to ultrasound before heat-treatment, furnished the highest power density in the single fuel cell. The third and last part of this work aimed to investigate the effects of the use of Black Pearls 2000 carbon support on the stability and electroactivity of the Pt-RuOx/C catalysts. DMFC tests and potential scans in the presence of methanol were performed, and results were compared with those obtained for the catalysts synthesized with Vulcan XC-72 carbon. Catalysts synthesized with Black Pearls 2000 carbon presented larger electrochemically active surface area compared to catalysts prepared with Vulcan XC-72 carbon using the same procedure. This indicates better metallic particles dispersion on the support, since the amount of Pt was kept constant in the catalysts. This better dispersion of metallic particles on the carbon support resulted in higher power density and current density in the single fuel cell operating with methanol in the liquid phase. The performance of two of the three prepared catalysts was better than that of E-TEK commercial catalyst. The dissolution of the metallic components and the reduction in the electrochemically active surface area was smaller for catalysts prepared with Black Pearls 2000 carbon, and the crystallite size did not change after 2000 potential scans. All these results demonstrate the superior stability of the catalysts prepared with this support.
|
2 |
Estudo da estabilidade de eletrocatalisadores Pt/C e Pt-RuOx/C / Investigation on the stability of Pt/C and Pt-RuOx/C catalystsÉlen Cristina Gonçalves Rufino 05 August 2011 (has links)
Neste trabalho, foram investigadas as modificações na estrutura e a estabilidade de eletrocatalisadores Pt/C e Pt-RuOx/C, preparados pela decomposição térmica de precursores poliméricos. Experimentos de varredura de potencial e experimentos com potencial fixo foram realizados com o objetivo de acelerar os mecanismos de degradação dos catalisadores. Para identificar e compreender os fatores que levaram a degradação dos catalisadores, foram realizados experimentos para determinação da área superficial eletroquimicamente ativa dos catalisadores, através da adsorção/oxidação de CO, análises dos catalisadores por difração de raios X (DRX) e análises das soluções por espectrometria de massa com fonte de plasma indutivamente acoplado (ICP-MS).Foram avaliadas as modificações na estrutura e a estabilidade dos eletrocatalisadores Pt/C e Pt-RuOx/C quando submetidos a 2000 varreduras de potencial em diferentes intervalos (i) 0,05-0,5 V; (ii) 0,05-0,7 V e (iii) 0,05-0,9 V na presença e na ausência de metanol e também quando submetidos a um potencial fixo por várias horas. Foi observado, de maneira geral, um aumento no tamanho dos cristalitos, dissolução dos componentes metálicos e uma redução da área superficial eletroquimicamente ativa. Os resultados obtidos na primeira parte do trabalho também mostraram que a degradação dos catalisadores foi maior na presença de metanol e que condições de potencial cíclico aceleram os mecanismos de degradação quando comparadas a condições de potencial fixo. Após uma melhor compreensão dos mecanismos de degradação, a segunda parte do trabalho foi voltada para investigação da influência de modificações no método Pechini durante a síntese dos eletrocatalisadores Pt-RuOx/C na estrutura e estabilidade destes catalisadores. Para isto, os catalisadores foram submetidos a varreduras de potencial entre 0,05-0,6 V e experimentos com potencial fixo em 0,6 V na presença de metanol. Para avaliar a influência das modificações no método de preparo na eletroatividade dos catalisadores, foram realizados testes em uma DMFC utilizando uma MEA (Membrane Electrode Assemblies) formada por ânodo Pt-RuOx/C / membrana de Nafion® 117 / cátodo Pt/C comercial (E-TEK). O estudo da estabilidade mostrou que o catalisador cuja mistura composta pelas resinas e suporte de carbono foi submetida à rotação em um moinho de bolas antes do tratamento térmico se mostrou bem mais estável que os demais catalisadores (submetidos ao ultrassom). Já os catalisadores preparados com uma única resina contendo Pt e Ru e submetidos ao ultrassom antes do tratamento térmico, mostraram os melhores resultados nos experimentos em condições operacionais em célula a combustível unitária. A terceira e última parte deste trabalho teve por objetivo investigar os efeitos da utilização do carbono Black Pearls 2000 como suporte na estabilidade e eletroatividade de eletrocatalisadores Pt-RuOx/C. Testes em uma DMFC e varreduras de potencial na presença de metanol foram realizados e os resultados comparados com os obtidos para os catalisadores sintetizados com carbono Vulcan XC-72. Os catalisadores sintetizados com carbono Black Pearls 2000 apresentaram maior área superficial eletroquimicamente ativa que os catalisadores preparados com carbono Vulcan XC-72 pelo mesmo procedimento, indicando uma melhor dispersão das partículas metálicas sobre o suporte, uma vez que a quantidade de Pt nos catalisadores foi mantida constante. Esta melhor dispersão das nanopartículas metálicas sobre o suporte resultou em maiores valores de densidade de potência e densidade de corrente em célula a combustível unitária operando com metanol na fase líquida. Para dois dos três catalisadores, o desempenho foi superior ao catalisador comercial da E-TEK. A dissolução dos componentes metálicos e a redução da área superficial eletroquimicamente ativa foi menor para os catalisadores preparados com carbono Black Pearls 2000 e o tamanho de cristalito não variou após 2000 varreduras de potencial. Todos estes resultados mostram uma maior estabilidade dos catalisadores preparados com este suporte. / In this work, changes in the structure and stability of the Pt/C and Pt-RuOx/C catalysts, prepared by the thermal decomposition of polymeric precursors, were investigated. Potential scans and constant potential experiments were carried out, to accelerate catalyst degradation mechanisms. To comprehend the catalyst degradation, determination of the electrochemical active surface area by means of the method based on the CO-stripping voltammetry curve, catalysts analyses by X-ray diffraction (XRD), and solution analyses by inductively coupled plasma mass spectrometry (ICP-MS) were accomplished.The changes in the structure and stability of Pt/C and Pt-RuOx/C electrocatalysts subjected to 2000 potential scans at different potential ranges (0.05-0.5, 0.05-0.7, and 0.05-0.9 V) were monitored in sulfuric acid solution, in the absence and in the presence of methanol. The influence of application of a constant potential for a prolonged time period was also investigated. As a general behavior, there was increase in particle size, dissolution of catalyst components, and reduction in the electrochemically active surface area. Catalyst degradation was more pronounced in the presence of methanol, and the cyclic potential conditions revealed higher degradation rate compared to the rate observed in constant potential conditions. After a better comprehension of the degradation mechanisms, the second part of this work focused on monitoring the influence of modifications made to the Pechini method during the synthesis of Pt-RuOx/C electrocatalysts on the structure and stability of these catalysts after they were subjected to a large number of potential scans between 0.05 and 0.6 V and at constant potential of 0.6V vs. RHE for a prolonged time period in sulfuric acid 0.5 mol L-1 and in methanol 0.1 mol L-1 solution. DMFC tests were accomplished using membrane electrode assemblies (MEAs) prepared by hot-pressing a pretreated Nafion® 117 membrane together with the Pt-RuOx anode and an E-TEK cathode, in order to compare the catalytic activity of catalysts prepared by different methods. The stability study demonstrated that the catalyst whose resin/carbon support mixture was agitated in a balls mill before being subjected to heat-treatment was more stable than the other prepared catalysts (subjected to ultrasound). The catalysts prepared with the single resin consisting of Pt and Ru, subjected to ultrasound before heat-treatment, furnished the highest power density in the single fuel cell. The third and last part of this work aimed to investigate the effects of the use of Black Pearls 2000 carbon support on the stability and electroactivity of the Pt-RuOx/C catalysts. DMFC tests and potential scans in the presence of methanol were performed, and results were compared with those obtained for the catalysts synthesized with Vulcan XC-72 carbon. Catalysts synthesized with Black Pearls 2000 carbon presented larger electrochemically active surface area compared to catalysts prepared with Vulcan XC-72 carbon using the same procedure. This indicates better metallic particles dispersion on the support, since the amount of Pt was kept constant in the catalysts. This better dispersion of metallic particles on the carbon support resulted in higher power density and current density in the single fuel cell operating with methanol in the liquid phase. The performance of two of the three prepared catalysts was better than that of E-TEK commercial catalyst. The dissolution of the metallic components and the reduction in the electrochemically active surface area was smaller for catalysts prepared with Black Pearls 2000 carbon, and the crystallite size did not change after 2000 potential scans. All these results demonstrate the superior stability of the catalysts prepared with this support.
|
3 |
Membrane Electrode Assembly (MEA) Design for Power Density Enhancement of Direct Methanol Fuel Cells (DMFCs)Tse, Laam Angela 13 June 2006 (has links)
Micro-direct methanol fuel cells (micro-DMFC) can be the power supply solution for the next generation of handheld devices. The applications of the micro-DMFCs require them to have high compactness, high performance, light weight, and long life. The major goal of this research project is to enhance the volumetric power density of direct methanol fuel cells (DMFCs). A performance roadmap has been formulated and showed that patterning the planar membrane electrode assembly (MEA) to 2-D and 3-D corrugated manifolds can greatly increase the power generation with very modest overall volume increases. In this project, different manufacturing processes for patterning MEAs with corrugations have been investigated. A folding process was selected to form 2D triangular corrugations on MEAs for experimental validations of the performance prediction. The experimental results show that the volumetric power densities of the corrugated MEAs have improved by about 25% compared to the planar MEAs, which is lower than the expected performance enhancement. ABAQUS software was used to simulate the manufacturing process and identify the causes of deformations during manufacture. Experimental analysis methods like impedance analysis and 4 point-probes were used to quantify the performance loss and microstructure alteration during the forming process. A model was proposed to relate the expected performance of corrugated MEAs to manufacturing process variables. Finally, different stacking configurations and issues related to cell stacking for corrugated MEAs are also investigated.
|
4 |
Studies On Direct Methanol And Direct Borohydride Fuel CellsKothandaraman, R 05 1900 (has links)
A fuel cell is an electrochemical power source with advantages of both the combustion engine and the battery. Like a combustion engine, a fuel cell will run as long as it is provided fuel; and like a battery, fuel cells convert chemical energy directly to electrical energy. As an electrochemical power source, fuel cells are not subjected to the Carnot limitations of combustion (heat) engines. Fuel cells bear similarity to batteries, with which they share the electrochemical nature of the power generation process and to the engines that, unlike batteries, will work continuously consuming a fuel of some sort. A fuel cell operates quietly and efficiently and, when hydrogen is used as a fuel, it generates only power and water. Thus, a fuel cell is a so called ‘zero-emission engine’.
In the past, several fuel cell concepts have been tested in the laboratory but the systems that are being potentially considered for commercial developments are: (i) Alkaline Fuel Cells (AFCs), (ii) Phosphoric Acid Fuel Cells (PAFCs), (iii) Polymer Electrolyte Fuel Cells (PEFCs), (iv) Solid Polymer Electrolyte Direct Methanol Fuel Cells (SPE-DMFCs), (v) Molten Carbonate Fuel Cells (MCFCs) and (vi) Solid Oxide Fuel Cells (SOFCs).
Among the aforesaid systems, PEFCs that employ hydrogen as fuel are considered attractive power systems for quick start-up and ambient temperature operations. Ironically, however, hydrogen as fuel is not available freely in the nature. Accordingly, it has to be generated from a readily available hydrogen carrying fuel such as natural gas, which needs to be reformed. But, such a process leads to generation of hydrogen contaminated with carbon monoxide, which even at minuscule level is detrimental to the fuel cell performance. Pure hydrogen can be generated through water electrolysis but hydrogen thus generated needs to be stored as compressed/liquefied gas, which is cost-intensive. Therefore, certain hydrogen carrying organic fuels such as methanol, ethanol, propanol, ethylene glycol and diethyl ether have been considered for fueling PEFCs directly. Among these, methanol with hydrogen content of about 12.8 wt.% (specific energy = 6.1kWh kg-1) is the most attractive organic liquid. PEFCs using methanol directly as fuel are referred to as SPE-DMFCs. But SPE-DMFCs suffer from methanol crossover across the polymer electrolyte membrane, which affects the cathode performance and hence the fuel cell during its operation. SPE-DMFCs also have inherent limitations of low open-circuit-potential and low electrochemical-activity. An obvious solution to the aforesaid problems is to explore other promising hydrogen carrying fuels such as sodium borohydride (specific energy = 12kWh kg-1), which has a capacity value of 5.67Ah g-1 and a hydrogen content of about 11wt.%. Such fuel cells are called direct borohydride fuel cells (DBFCs).
This thesis is directed to studies on SPE-DMFCs and DBFCs
|
Page generated in 0.0247 seconds