• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • Tagged with
  • 16
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Six Sigma Approach to Implementing Conformal Cooling on Existing Processes in Injection Molding

Jack, William Josiah 01 August 2017 (has links)
Injection molding is one of the most common methods of mass production. After injecting molten plastic into a mold, the heat must leave the plastic material, enter the mold steel, enter the coolant, and exit the mold. This heat flow is critical to producing high quality parts rapidly. As plastic cools, the plastic shrinks. Uneven cooling causes uneven shrinkage which can cause the part to warp from the resulting internal stresses or create sink marks on the part. Thus the effect of uneven cooling is lower part quality, both in appearance and in dimension. Standard or conventional cooling channels are straight-drilled holes arranged such that they intersect and connect to form a loop for coolant, typically water, to flow through. This allows the mold to act as a heat exchanger, transferring heat to the coolant and carrying heated coolant away from the mold. While standard cooling channels have been used widely in the injection molding industry for their manufacturability and proven results, other methods have been developed for creating molds with cooling channels of any desired path or shape. These channels, called conformal due to how they conform to the shape of the part, provide uniform cooling, eliminate or reduce the quality issues of warpage and shrinkage, and provide faster, more economical cycle times. Conformal cooling is cannot be produced only by subtractive manufacturing methods that remove material from raw stock but rather through additive or hybrid manufacturing techniques that add material in layers of powder, sections, or sheets. Bonded sheet layer mold inserts can be made of any size and are currently the only feasible way of making large, conformally-cooled molds. Presented is a Six Sigma approach for implementing conformal cooling in existing molds to achieve the benefits of higher part quality and fast cycle times. Feasibility considerations include existing mold features such as slides and ejectors, choice of channel diameter, and the cooling channel path. Cost justification considerations include assessing part quality cost impact through calculation of the costs of poor quality and assessing machine capacity as relates to cycle time. With the approach presented, an injection molding company should be able to assess feasibility and cost effectiveness of implementing conformal cooling on its molds.
2

Recent e-Manufacturing solutions developed by EOS

Langer, H.J., Shellabear, M. January 2006 (has links)
Published Article / e-Manufacturing means the fast, flexible and cost-effective production of parts directly from electronic data, which can include rapid prototyping, rapid tooling, (spare) parts on demand etc. Especially interesting is the direct manufacture of enduse parts. In this paper, recent case studies will be presented showing commercial e-Manufacturing projects including small production batches and mass customized series production from various industrial branches. The paper also discusses the relevance of several recent technological innovations in laser-sintering for e- Manufacturing, especially how increasing the productivity of machines and process chains has increased the range of applications which are cost-effective using lasersintering. <br>Case studies include: <ul> <li> small series production (up to a few thousand p.a.) of products</li> <li> production of customized (one-off) products</li> <li> mass production of customer-specific (mass customized) products</li> <li> optimized tooling concepts for production of up to millions of products</li> </ul>
3

Effect of Process Parameters on Surface Roughness and Porosity of Direct Metal Laser Sintered Metals

Patibandla, Aditya Ramamurthy January 2018 (has links)
No description available.
4

Análise comparativa da resistência à corrosão eletroquímica da liga de Ti-6Al-4V e do aço inoxidável AISI316L obtidas por manufatura aditiva visando aplicações biomédicas /

Jaime, Gustavo Carneiro January 2017 (has links)
Orientador: Ruis Camargo Tokimatsu / Resumo: A procura por materiais, com compatibilidade e funcionalidade biológicas, que possam melhorar a qualidade da vida humana é constante, além da busca de processos de fabricação que atendam às necessidades de manufatura de artefatos de geometria complexa. Os artefatos de aço inoxidável são utilizados por possuírem uma boa biocompatibilidade, baixo custo de produção, mas podem liberar íons como o cobalto, que é carcinogênico. O uso de Ligas de titânio é uma boa alternativa, já que possuem uma maior resistência à corrosão e boa resposta biológica, porém, seu custo é muito elevado. Considerando esses aspectos, o presente trabalho foi realizado buscando estudar, comparativamente, as características de microdureza, microdesgaste e resistência à corrosão de artefatos manufaturados para aplicações biomédicas, aproveitando as características mecânicas da liga de aço inoxidável AISI316L, usado como substrato, com as características eletroquímicas apresentadas pela liga de titânio Ti-6Al-4V, usado como material de tratamento de superfície. A sinterização direta dos metais por laser (DMLS) foi o processo de manufatura escolhido por apresentar as características de fabricação desejadas. Os ensaios realizados foram o de microdureza Vickers, ensaio de desgaste microadesivo por esfera rotativa fixa (esfera-fixa) e para o comparativo da resistência à corrosão eletroquímica foram produzidas curvas de polarização potenciodinâmicas que forneceram os seguintes parâmetros: o potencial de corrosão, a... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
5

Microstructure Development in Direct Metal Laser Sintered Inconel Alloy 718

January 2017 (has links)
abstract: The microstructure development of Inconel alloy 718 (IN718) during conventional processing has been extensively studied and much has been discovered as to the mechanisms behind the exceptional creep resistance that the alloy exhibits. More recently with the development of large scale 3D printing of alloys such as IN718 a new dimension of complexity has emerged in the understanding of alloy microstructure development, hence, potential alloy development opportunity for IN718. This study is a broad stroke at discovering possible alternate microstructures developing in Direct-Metal-Laser-Sintering (DMLS) processed IN718 compared to those in conventional wrought IN718. The main inspiration for this study came from creep test results from several DMLS IN718 samples at Honeywell that showed a significant improvement in creep capabilities for DMLS718 compared to cast and wrought IN718 (Honeywell). From this data the steady-state creep rates were evaluated and fitted to current creep models in order to identify active creep mechanisms in conventional and DMLS IN718 and illuminate the potential factors responsible for the improved creep behavior in DMSL processed IN718. Because rapid heating and cooling can introduce high internal stress and impact microstructural development, such as gamma double prime formations (Oblak et al.), leading to differences in material behavior, DMLS and conventional IN718 materials are studied using SEM and TEM characterization to investigate sub-micron and/or nano-scale microstructural differences developed in the DMLS samples as a result of their complex thermal history and internal stress. The preliminary analysis presented in this body of work is an attempt to better understand the effect of DMLS processing in quest for development of optimization techniques for DMLS as a whole. A historical sketch of nickel alloys and the development of IN718 is given. A literature review detailing the microstructure of IN718 is presented. Creep data analysis and identification of active creep mechanisms are evaluated. High-resolution microstructural characterization of DMLS and wrought IN718 are discussed in detail throughout various chapters of this thesis. Finally, an initial effort in developing a processing model that would allow for parameter optimization is presented. / Dissertation/Thesis / Masters Thesis Engineering 2017
6

Design and Manufacturing Guidelines for Additive Manufacturing of High Porosity Cellular Structures

Kabbur, Nikhil 07 November 2017 (has links)
No description available.
7

Characterization of metal powder based rapid prototyping components with respect to aluminium high pressure die casting process conditions

Pereira, M.F.V.T., Williams, M., Du Preez, W.B January 2010 (has links)
Published Article / This paper is based on tests performed on die component specimens manufactured by EOS-DMLS (direct metal laser sintering) and LENS (laser engineered net shape) RP (rapid prototyping) technology platforms, as well as manufactured specimens machined out of preferred standard hot work steel DIN 1.2344. These specimens resemble typical components used in metal high pressure die casting tool sets. The specimens were subjected to a programme of cyclic immersion in molten aluminium alloy and cooling in water-based die release medium. The heat checking and soldering phenomena were analyzed through periodic inspections, monitoring crack formation and evidence of surface washout. At the end of the thermal tests, mechanical strength and hardness tests were performed to assess toughness and core resistance variations in relation to the initial conditions. Finally metallographic investigations were performed through optical microscopy on all the specimens considered. The outcomes of this research will be presented and used by the CSIR for further development and application of the assessed EOS-DMLS and LENS rapid prototyping technologies in rapid die manufacturing techniques and die design principles, including time and economic feasibility criteria to be applied when considering rapid die manufacture.
8

Reparo ósseo em scaffolds de TI6AL4V sinterizados pela tecnologia de sinterização direta de metais a laser (DMLS) submetidos a tratamento de superfície associado à aplicação de ultrassom de baixa intensidade (LIPUS) / Bone repair in Ti6Al4V porous scaffolds processed by direct seletive laser melting submited to surface treatment associated low intensity pulsed ultrasound – (LIPUS)

Bastos, Jaqueline Silva [UNESP] 20 January 2016 (has links)
Submitted by Jaqueline Bastos (keca78@yahoo.com.br) on 2016-04-26T17:00:34Z No. of bitstreams: 1 TESE JAQUELINE S BASTOS - finalizando 180316.pdf: 13526973 bytes, checksum: d40891f9f50c56b18b4ee564f6453a39 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-28T17:50:25Z (GMT) No. of bitstreams: 1 bastos_js_dr_guara.pdf: 13526973 bytes, checksum: d40891f9f50c56b18b4ee564f6453a39 (MD5) / Made available in DSpace on 2016-04-28T17:50:25Z (GMT). No. of bitstreams: 1 bastos_js_dr_guara.pdf: 13526973 bytes, checksum: d40891f9f50c56b18b4ee564f6453a39 (MD5) Previous issue date: 2016-01-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo desse estudo in vivo foi verificar a resposta óssea de scaffolds porosos revestidos processados pela técnica de Sinterização Direta de Metais a laser (DMLS) associado à terapia de ultrassom de baixa intensidade. Os scaffolds foram processados empregando a técnica DMLS e tratados termicamente a 1000°C por 24 horas. Três tipos de tratamento de superfície foram avaliados: Alcalino, biomimético e imobilização de alendronato de sódio. Para o tratamento alcalino, as amostras foram imersas na solução de NaOH (5M) a 60ºC por 24 horas. O tratamento biomimético consistiu na imersão dos scaffolds em solução SBF (SimulatedBodyFluid) enquanto a imobilização do alendronato foi realizada a partir da imersão dos scaffolds em uma solução formada por SBF e medicamento durante 5 dias. As superfícies dos scaffolds foram avaliadas para cada etapa empregando microscopia eletrônica de varredura (MEV) e análise por difração de raios-X. Os scaffolds foram implantados na tíbia direita de 85 ratos machos da raça wistar com idade média de 12 semanas. A microtomografia computadorizada (µCT) e análise histológica foram realizadas para avaliar o reparo ósseo no defeito. As micrografias das superfícies obtidas mostraram mudanças no aspecto da superfície e composição química de acordo com o tratamento. O tratamento biomimético promoveu o crescimento da apatita sobre a superfície enquanto a imobilização com alendronato suprimiu sua formação. As imagens obtidas na microtomografia mostraram elevado valor de densidade óssea para o último grupo. No entanto, análises histológicas mostraram a formação de cápsula fibrosa em torno dos scaffolds a qual foi minimizada usando ultrassom pulsado de baixa intensidade. No entanto, mais estudos precisam ser realizados para avaliar a influência da geometria dos scaffolds na incorporação de medicamentos. / The objective of this in vivo study was to verify the bone response of coated Ti6Al4V porous scaffolds processed by Direct Metal Laser Sintering (DMLS) technique associated to low intensity pulsed ultrasound therapy. Scaffolds were processed by using Direct Metal Laser Sintering technique (DMLS) and heat treated at 1000 °C for 24 hours. Three types of surface treatments were evaluated: alkaline, biomimetic and sodium alendronate immobilization. For alkaline treatment, samples were immersed in a NaOH (5M) solution at 60ºC for 24 hours. Biomimetic treatment consisted in the immersion of the scaffolds into Simulated Body Fluid solution while for sodium alendronato immobilization the scaffolds were immersed in the solution formed by SBF plus drug during 5 days. The scaffolds surfaces were evaluated after each step employing SEM (Scanning Electron Microscopy)and X-rays diffraction analysis(XRD). Scaffolds were implanted into right tibia of 85 male Wistar rats with average age of 12 weeks. X-rays micro-computed tomography (µCT) and histological analysis were carried out to evaluate the bone repair on the defect. Micrographs analysis showed that the aspect of the surfaces and chemical composition changed according treatment. Biomimetic treatment promoted the growth of the apatite on the surface; in contrast the immobilization of alendronate suppressed apatite formation. Micro CT images showed higher value of bone density for the last group. However, histological analysis showed the formation of encapsulation fibrous around the scaffolds. This formation was minimized by using low intensity pulsed ultrasound technique, however, more studies can be carried out to evaluate the influence of scaffolds geometry in the drug incorporation.
9

Microstructure and Chemistry Evaluation of Direct Metal Laser Sintered 15-5 PH Stainless Steel

Coffy, Kevin 01 January 2014 (has links)
15-5PH stainless steel is an important alloy in the aerospace, chemical, and nuclear industries for its high strength and corrosion resistance at high temperature. Thus, this material is a good candidate for processing development in the direct metal laser sintering (DMLS) branch of additive manufacturing. The chemistry and microstructure of this alloy processed via DMLS was compared to its conventionally cast counterpart through various heat treatments as part of a characterization effort. The investigation utilized optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffractometry (XRD), energy dispersive X-Ray spectroscopy (EDS) and glow discharge atomic emission spectrometry (GDS) techniques. DMLS processed samples contained a layered microstructure in which the prior austenite grain sizes were relatively smaller than the cast and annealed prior austenite grain size. The largest of the quantifiable DMLS prior austenite grains had an ASTM grain size of approximately 11.5-12 (6.7?m to 5.6?m, respectively) and the cast and annealed prior austenite grain size was approximately 7-7.5 (31.8µm to 26.7µm, respectively), giving insight to the elevated mechanical properties of the DMLS processed alloy. During investigation, significant amounts of retained austenite phase were found in the DMLS processed samples and quantified by XRD analysis. Causes of this phase included high nitrogen content, absorbed during nitrogen gas atomization of the DMLS metal powder and from the DMLS build chamber nitrogen atmosphere. Nitrogen content was quantified by GDS for three samples. DMLS powder produced by nitrogen gas atomization had a nitrogen content of 0.11 wt%. A DMLS processed sample contained 0.08 wt% nitrogen, and a conventionally cast and annealed sample contained only 0.019 wt% nitrogen. In iron based alloys, nitrogen is a significant austenite promoter and reduced the martensite start and finish temperatures, rendering the standard heat treatments for the alloy ineffective in producing full transformation to martensite. Process improvements are proposed along with suggested future research.
10

<b>Fluid Dynamic, Conjugated Heat Transfer and Structural Analyses of an Internally Cooled Twin-Screw Compressor</b>

Abhignan Saravana (18426282) 23 April 2024 (has links)
<p dir="ltr">Current industrial processes are energy and carbon emission intensive. Amidst the growing demand for decarbonization, it is critical to utilize alternate sources of energy and innovative technologies that could improve efficiency and reduce power consumption. In this context, twin-screw compressors are used extensively in commercial and industrial applications. Profile optimization and capacity modulation solutions (e.g., slide valves, variable-speed, etc.) are continuously investigated to improve the performance and operation of the compressors. This study focuses on an exploratory investigation of an additively manufactured twin-screw compressor with internal cooling channels to achieve a near isothermal compression process by evaluating both the potential compressor performance improvement and the structural integrity by means of rotordynamics and fatigue analyses.</p><p dir="ltr">To predict the compressor performance, complex coupling between compression process and heat transfer during the operation of the compressor must be investigated. The interactions between solid (i.e., rotors) and fluid phases (i.e., air and coolant) were modeled using a transient 3D CFD model with conjugated heat transfer (CHT). The CFD model predicted compressor performance parameters such as isentropic efficiency, heat transfer rate, work input and compression forces on the rotors. The performance of the twin-screw compressor with internal cooling channels has been compared with a conventional twin-screw compressor for which experimental data was available. Further investigations have been conducted at different operating conditions, including various pressure ratios, rotational speeds, and mass flow rates to improve the compressor efficiency. The results of the CFD model were used to quantify compression loads, assess the characteristics of the heat transfer processes, and optimize the internal flow through the cooling channels. As the rotors can be affected by stress accumulation and deformations due to their hollowness and reduced wall thickness over time, this study also established a detailed rotordynamic simulation model and a fatigue model using the actual compression forces obtained from previous CFD studies. Both hollow and solid rotors have been analyzed and compared. The bearing loads have been verified against Campbell diagrams whereas the fatigue results have been compared with experimental testing. With the validated model, the hollow rotor compressor durability was analyzed and compared with the conventional rotors. Lastly, a general mechanistic model to better understand bearing loads and frictional losses in a twin-screw compressor is also established and studied.</p><p dir="ltr">The CHT study concluded that the hollow rotor with single-phase internal cooling yielded to an increase in isentropic efficiency of 1% for the higher pressure ratio and 2% for lower pressure ratio at 19,000 RPM. More importantly, the hollow rotors also showed a decrease of 40 K and 20 K in discharge temperatures for the two operating conditions respectively, thereby arriving closer to isothermal conditions and reducing the thermal stresses on the rotors. The rotordynamic study revealed that the male rotor would endure highest amount of von Misses stress reaching up to 338 MPa for the pressure ratio of 3.29 bar and 19,000 RPM. Because of this, a maximum fatigue factor of safety of 5 occurs on the male rotor. From the analyses, the rotors were deemed to be safe and optimized for the designed operating conditions and proof of concept rotors were additively manufacturers with an Inconel alloy through Direct Metal Laser Sintering.</p>

Page generated in 0.028 seconds