Spelling suggestions: "subject:"packaging"" "subject:"repackaging""
1 |
Effect of naturally occurring DNA modifications on DNA structure and packagingLi, Zhe January 2019 (has links)
In eukaryotes, the genomic double-stranded DNA (dsDNA) coils around histones to form nucleosomes. Arrays of these nucleosomes bundle together to generate chromatin. Most DNA-related processes require interactions between chromatin-protected DNA and cellular machinery. Access of cell machinery to genomic DNA is partially regulated by the position and stability of nucleosomes, which may be influenced by changes in nucleosomal DNA. DNA is composed of adenine (A), guanine (G), cytosine (C), thymine (T) nucleotides and their derivatives. It has been shown that some C derivatives participate in directing multiple biological processes, and aberrant modification patterns are often linked to diseases. It has been proposed that T derivatives exhibit similar effects. This thesis focuses on elucidating the effect of naturally occurring DNA modifications on the properties of dsDNA and nucleosomes. dsDNA sequences systematically modified with various T derivatives were characterized using classical biophysical techniques to assess the effect of these DNA modifications. The results indicate that in the sequence context studied, 5-hydroxymethyluracil modifications destabilize dsDNA, while dense symmetrical 5-formyluracil (fU) modifications alter the dsDNA structure. These effects may provide clues to the differential protein recruitment observed in previous research. In vitro studies on nucleosome occupancy and stability revealed that 5-formylcytosine (fC) modifications have positive effects on nucleosome formation and stability compared to the unmodified counterpart by influencing the intrinsic biochemical and biophysical properties of the nucleosomes. These results provide casual links for the observation in vivo between fC and the increased nucleosome occupancy and positioning. In order to further understand the positional effect of fC on the nucleosomes, a method was developed for quick and reliable incorporation of C derivatives into dsDNA at desired positions. The positive effect of fC modifications on nucleosome occupancy and stability observed here has necessitated further studies to gain deeper insights into the biological functions of fC in the nucleosome context. Cryo-EM can be used to elucidate the structural foundation for the changes fC posts to nucleosome, and protein interacting assays will identify the cellular machineries specifically recruited/repulsed by fC-modified nucleosomes. The effect of DNA modifications elucidated by the above studies advances our understanding on the role that DNA modifications play in regulating cellular processes.
|
2 |
Biophysical and structural characterization of bacteriophage lambda terminase : a DNA packaging enzyme /Ortega, Marcos Eduardo. January 2006 (has links)
Thesis (Ph.D. in Biochemistry) -- University of Colorado, 2006. / Typescript. Includes bibliographical references (leaves 118-126). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
|
3 |
Biochemical characterizations of DNA packaging enzyme gp16 of bacterial virus phi29Lee, Tae Jin 04 December 2009 (has links)
No description available.
|
4 |
Spermine-nucleic acid interactions : roles of hydrophobicity, polynucleotide sequence-dependence and nature of polynucleotide /Patel, Mayank Mukesh. January 2006 (has links)
Thesis (Ph.D. in Pharmaceutical Sciences) -- University of Colorado at Denver and Health Sciences Center, 2006. / Typescript. Includes bibliographical references (leaves 130-149, 177-182). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
|
5 |
Molecular Mechanism of Connector-RNA Interaction of Bacteriophage Phi29 DNA Packaging Motor and Applications of Motor Components in NanotechnologyXiao, Feng January 2009 (has links)
No description available.
|
6 |
Towards Elucidation of a Viral DNA Packaging MotorSchwartz, Chad T. 01 January 2013 (has links)
Previously, gp16, the ATPase protein of phi29 DNA packaging motor, was an enigma due to its tendency to form multiple oligomeric states. Recently we employed new methodologies to decipher both its stoichiometry and also the mechanism in which the protein functions to hydrolyze ATP and provide the driving force for DNA packaging. The oligomeric states were determined by biochemical and biophysical approaches. Contrary to many reported intriguing models of viral DNA packaging, it was found that phi29 DNA packaging motor permits the translocation of DNA unidirectionally and driven cooperatively by three rings of defined shape. The mechanism for the generation of force and the role of adenosine and phosphate in motor motion were demonstrated. It was concluded that phi29 genomic DNA is pushed to traverse the motor channel section by section with the aid of ATPase gp16, similar to the hexameric AAA+ family in the translocation of dsDNA. A new model of "Push through a One-way Valve" for the mechanism of viral DNA packaging motor was coined to describe the coordinated interaction among the hexameric packaging ATPase gp16 and the revolution mechanism of the dodecameric channel which serves as a control device to regulate the directional movement of dsDNA.
|
7 |
Role of the Small Terminase Subunit Encoded by Staphylococcus Aureus Pathogenicity Island SaPI1 in Formation of SaPI1 Transducing ParticlesOlivarez, Nicholas Paul 01 January 2008 (has links)
Staphylococcus aureus pathogenicity island SaPI1 is a genomic element that is mobilized and transduced at high frequency by helper phage 80α. SaPI1 encodes a small terminase protein that belongs to the phage small terminase subunit family. The presence of SaPI1-encoded small terminase suggests that it plays a role in SaPI1-specific packaging into transducing particles by complexing with the 80α large terminase subunit and redirecting recognition to a pac site on SaPI1 DNA from 80α DNA. The effects of deleting the small terminase genes in SaPI1 and in a prophage copy of 80α are consistent with this hypothesis. Induction of the 80α small terminase deletion mutant produces wild type levels of SaPI1 transducing particles, demonstrating that SaPI1 small terminase can replace that of 80a in SaPI1 packaging. Southern blot analysis of virion DNAs isolated from the deletion mutants confirms that SaPI1 redirects packaging of its DNA into SaPI1-sized capsids.
|
8 |
Molecular Dynamics Studies of the Phi29 Connector-DNA complexKumar, Rajendra 18 July 2014 (has links)
No description available.
|
9 |
Cytomégalovirus humain, mutations de résistance et nouvelles cibles thérapeutiques / Resistance mutations of human cytomegalovirus and new antiviral targetsLigat, Gaëtan 01 December 2017 (has links)
Le cytomégalovirus humain (CMVH) est un pathogène opportuniste majeur en cas d’immunodépression et représente la principale cause d’infection congénitale d’origine virale. Bien qu’efficaces, l’utilisation des molécules conventionnelles est limitée par l’émergence de résistance et leur toxicité. Il devient alors nécessaire de développer de nouveaux traitements.L’étude des nouvelles mutations émergeant sous traitement antiviral demeure donc essentielle. L’introduction de ces nouvelles mutations, par mutagénèse « en passant », dans un chromosome bactérien artificiel contenant le génome viral nous permet, après transfection en cellules humaines, de tester la sensibilité de la souche recombinantes aux antiviraux.Différentes mutations de résistances ont ainsi été caractérisées. Afin de mettre en évidence de nouvelles cibles antivirales, des analyses bio-informatiques et la production de virus recombinants ont permis d’identifier de potentiels motifs fonctionnels essentiels à la réplication au sein du complexe terminase et hélicase-primase. Ainsi, nous avons montré quela sous-unité pUL56 du complexe terminase appartient à la famille des LAGLIDADG Homing Endonuclease. En effet, pUL56 contient un motif LATLNDIERFL et un motif de liaison à l’ADN. La technologie Alpha utilisant des protéines purifiées a permis de valider le caractère essentiel du fragment WMVVKYMGFF de pUL56 pour l’interaction avec pUL89. Enfin, nous avons mis en évidence les résidus impliqués dans la fixation de l’ATP au sein de l’hélicase et dans la stabilisation du zinc de la primase. Ainsi, la compréhension de la structure de ces protéines pourrait permettent de mieux appréhender leur fonctionnement au sein du processus de réplication du CMVH et le développement de nouvelles thérapies ciblant ces domaines. / Human cytomegalovirus (HCMV) is an important opportunistic pathogen for immunecompromised patients and is the leading cause of congenital viral infection. Although they are effective, using of conventional molecules is limited by the emergence of resistance and their toxicity. Then it becomes necessary to develop new treatments. Study of new mutationsemerging under antiviral treatment is therefore essential. Introduction of these new mutations, by « en passant » mutagenesis, into an artificial bacterial chromosome containing the viral genome allows us, after transfection into human cells, testing antivirals sensitivity of the recombinant. Different mutations of resistances have been characterized. In order tohighlight new antiviral targets, bioinformatics and recombinant viruses production allowed to identify potential functional patterns essential for viral replication within terminase and helicase-primase complex. Thus, we have shown that pUL56 subunit of the terminase complex belongs to the LAGLIDADG Homing Endonuclease family. Indeed, pUL56 contains aLATLNDIERFL motif and a DNA binding motif. Alpha technology using purified proteins allowed to validate the essential character of the WMVVKYMGFF fragment of pUL56 for the interaction with pUL89. Finally, we highlighted the residues involved in ATP binding within the helicase and in the stabilization of zinc within the primase. Thus, understanding of these proteins structure could allow us to better understand their role within the viral replication process and the development of new therapies targeting these domains.
|
10 |
Structure and Function Study of Phi29 DNA packaging motorFang, Huaming January 2012 (has links)
No description available.
|
Page generated in 0.0628 seconds