21 |
探討N-甲基-D-天門冬胺酸受體在時距相關的操作式制約行為與空間工作記憶的角色:memantine的神經心理藥理學機制 / Investigation of the role of N-methyl-D-aspartate (NMDA) receptors on temporal operant behavior and spatial working memory: the underlying neuropsychopharmacological mechanisms of memantine陳碩甫 Unknown Date (has links)
認知功能的提升是當今神經科學領域中的研究重點之一,但其神經機制尚有待釐清。本研究利用一種用於改善阿茲海默症臨床的非競爭型N-甲基-D-天門冬胺酸受體拮抗劑memantine,檢測其對於大白鼠在不同時距相關操作式制約行為及空間工作記憶行為之影響效果。實驗一為針對時間屬性的操作式制約行為實驗,運用大白鼠的區辯性增強低頻反應作業(DRL 10秒行為)與固定時距作業(FI 30秒行為)之行為作業,並操弄連續訓練與間歇訓練的兩種不同模式,測試memantine對前述四組受試的操作式制約行為在表現、消除與自發恢復等三階段之劑量反應。實驗二利用配對性延遲T迷津作業區分出不等基準線(表現好與表現差)之受試,再加以藥理實驗,測試memantine對於前述兩組受試之劑量反應。實驗一結果顯示,受試在兩種不同訓練模式下經十五次習得訓練後,在兩種操作式壓桿行為的壓桿反應相關指標中都有明顯的差異,這證實不同的行為訓練模式會導致學習後的表現有差異之別。memantine藥理實驗結果顯示,此藥對於上述四組受試的操作式行為之三階段的影響效果,會因為不同訓練模式與不同作業而異。實驗二結果顯示,memantine提高空間工作記憶的正確率在表現不好的組別有很顯著的藥效,這證實memantine對於空間式工作記憶行為的影響,也會因學習基準線的不同水平而異。在行為實驗後所進行的蛋白質表現量檢測中,memantine(5 mg/kg)只對五個測試腦區中的背側紋狀體中ERK1磷酸化程度有明顯上升的影響,而其對ERK2及CREB的磷酸化在所有腦組織中皆沒有顯著的影響。綜合以上結果,memantine影響時間與空間屬性的相關行為之藥理效果,會依行為的不同習得歷程(或行為背景經驗)及基準線表現程度而異,而此項行為藥理效果,可能與紋狀體中ERK1的磷酸化有關。 / The neural basis of cognitive enhancement is one of the intriguing topics in neuroscience research; however, the underlying neural mechanisms remain to be elucidated. This study examined the effects of memantine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist which is used to treat Alzheimer’s disease in clinic, on operant behaviors and spatial working memory. In Experiment 1, using the differential reinforcement for low-rate-response 10 sec (DRL 10s) and the fixed-interval 30 sec (FI 30s) operant tasks, and with the manipulation of two different training regimens (continuous vs. intermittent) in the acquisition phase, the effects of memantine were evaluated in three stages of behavioral tests including the performance (right after the end of 15-day acquisition), the extinction, and the spontaneous recovery (after the extinction). In Experiment 2, memantine were tested in the subjects with different level of baseline performance (good vs. bad) on the distinctive patterns of operant responding in four different groups which received DRL 10s and FI 30s with different training regimens; indicating that behavioral task and training background are critical to the operant performance of temporal operant behaviors. Such behavioral outcomes led the dissociable effects of memantine appeared in between the four groups as tested in all three different stages. The results of Experiment 2 showed a profound improvement of the correct responses rate on spatial working memory in the low-baseline group as compared to the higher-baseline group. With a pretreatment of memantine (5 mg/kg), brain tissues in five selected areas were collected for western blot assays of ERK 1, ERK 2, and CREB. The results only revealed a significant increase of ERK 1 phosphorylation in the dorsal striatum. Together, the effects of memantine to improve cognition-associated processes in the temporal operant behaviors and the baseline of performance, and the present observation of cognition-enhancing effects of memantine may be resulted by the ERK 1 phosphorylation in the dorsal striatum. Read more
|
22 |
電刺激大鼠側韁核對區辨性低頻操作式制約行為的影響 / The effects of electrical stimulation in the lateral habenula on operant behavior maintained by the differential reinforcement of low-rate (DRL) schedule of reinforcement in the rat林禧岳 Unknown Date (has links)
透過神經科學的研究,對於大腦的行為功能已有一定的認識,不同於以往的認識,目前認為神經行為機制不只由單一腦區或單一神經化學系統所調控。深部大腦電刺激經常被用來研究特定腦區的行為功能。但是,深部大腦電刺激的作用機制仍然不清楚。最近幾年臨床研究發現,利用電刺激在側韁核成功的治療憂鬱症患者。然而,目前認為側韁核與多巴胺系統互為負回饋作用,共同參與在動機行為的酬賞反應中。本實驗室先前的研究顯示,破壞韁核造成區辨性低頻操作式制約行為 (簡稱DRL行為)學習的障礙,然而,電刺激在側韁核造成DRL行為表現的結果還是未知的。所以,本實驗主要以電刺激在側韁核觀察大鼠行為上的改變,探討側韁核在行為上參與的功能。實驗一的結果顯示電刺激在側韁核並不影響自發性運動能力,在不同電流強度的刺激下也不會影響。實驗二的結果顯示電刺激在側韁核造成DRL 15秒的行為有類安非他命效果之行為表現,在高頻率電刺激有較顯著類安非他命的效果。實驗三的結果顯示電刺激在側韁核造成DRL 15秒的行為之影響,會被多巴胺受體抑制劑所抵消,而單獨注射巴胺受體抑制劑並不影響DRL 15秒的行為。實驗四的結果顯示電刺激在側韁核造成DRL 15秒的行為之影響,不會被正腎上腺素受體抑制劑所抵消。實驗五的結果顯示電刺激在側韁核造成DRL 72秒的行為之影響並不如DRL 15秒的行為顯著。實驗六的結果顯示電刺激在側韁核並不會造成大鼠無法區辨酬賞的量。綜合而言,側韁核在動機行為的角色,是透過影響多巴胺系統造成行為的改變。 / Behavioral function of the brain has been studied in neuroscience and progressively accumulated informative data to reveal the neurobehavioral mechanisms. It is now realized that those underlying mechanisms of behaviors is not as such simple as previous thought of limiting only in one locus of the brain or solely by one neurochemical system. The deep brain stimulation is usually used to study the behavioral function of specific brain regions. However, the mechanism of the deep brain stimulation is still unclear. The previous study has shown that electrical stimulation of the lateral habenula (LHb) successfully treated depression symptoms in the patients. It is proposed that an inhibitory role of LHb on the mibrain dopamine (DA) system which mediates the reward-related behavior. A previous study of this lab showed that lesion of habenula impaired the acquisition of differential reinforcement of low-rate responding (DRL) behavior. But, the effect of LHb stimulation on the DRL behavior is still unclear. To determine the functions of LHb involving in the behavior, the electrical stimulation was applied in LHb to observe the behavioral change of rats. The results of Experiment 1 showed that the LHb stimulation had no effect on locomotor activity. In Experiment 2, the LHb stimulation was shown to affect DRL 15-s behavior, which effects were similar to those affected by amphetamine. Experiment 3 showed that the DA receptor antagonists reversed the effects of LHb stimulation, while experiment 4 showed that norepinephrine (NE) receptor antagonists had no reversal effect on DRL 15-s behavior. In Experiment 5, the amphetamine-like behavior induced by LHb stimulation had subtle effects on DRL 72-s behavior. Experiment 6 showed that the LHb stimulation had no effect on a discrimination task. These data suggest that the LHb modulating DRL behavior is DA-dependent. Read more
|
23 |
EXPANDING THE AUTONOMOUS SURFACE VEHICLE NAVIGATION PARADIGM THROUGH INLAND WATERWAY ROBOTIC DEPLOYMENTReeve David Lambert (13113279) 19 July 2022 (has links)
<p>This thesis presents solutions to some of the problems facing Autonomous Surface Vehicle (ASV) deployments in inland waterways through the development of navigational and control systems. Fluvial systems are one of the hardest inland waterways to navigate and are thus used as a use-case for system development. The systems are built to reduce the reliance on a-prioris during ASV operation. This is crucial for exceptionally dynamic environments such as fluvial bodies of water that have poorly defined routes and edges, can change course in short time spans, carry away and deposit obstacles, and expose or cover shoals and man-made structures as their water level changes. While navigation of fluvial systems is exceptionally difficult potential autonomous data collection can aid in important scientific missions in under studied environments.</p>
<p><br></p>
<p>The work has four contributions targeting solutions to four fundamental problems present in fluvial system navigation and control. To sense the course of fluvial systems for navigable path determination a fluvial segmentation study is done and a novel dataset detailed. To enable rapid path computations and augmentations in a fast moving environment a Dubins path generator and augmentation algorithm is presented ans is used in conjunction with an Integral Line-Of-Sight (ILOS) path following method. To rapidly avoid unseen/undetected obstacles present in fluvial environments a Deep Reinforcement Learning (DRL) agent is built and tested across domains to create dynamic local paths that can be rapidly affixed to for collision avoidance. Finally, a custom low-cost and deployable ASV, BREAM (Boat for Robotic Engineering and Applied Machine-Learning), capable of operating in fluvial environments is presented along with an autonomy package used in providing base level sensing and autonomy processing capability to varying platforms.</p>
<p><br></p>
<p>Each of these contributions form a part of a larger documented Fluvial Navigation Control Architecture (FNCA) that is proposed as a way to aid in a-priori free navigation of fluvial waterways. The architecture relates the navigational structures into high, mid, and low-level controller Guidance and Navigational Control (GNC) layers that are designed to increase cross vehicle and domain deployments. Each component of the architecture is documented, tested, and its application to the control architecture as a whole is reported.</p> Read more
|
Page generated in 0.0209 seconds