• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 51
  • 40
  • 29
  • 16
  • 14
  • 8
  • 7
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 479
  • 129
  • 123
  • 110
  • 103
  • 93
  • 86
  • 83
  • 81
  • 70
  • 46
  • 42
  • 42
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Sorção e transporte de pesticidas sob condições de não-equilíbrio. / Nonequilibrium sorption and transport of pesticides.

Robson Rólland Monticelli Barizon 24 September 2004 (has links)
O objetivo deste trabalho foi avaliar o método de fluxo em colunas de solo e o método “batch” na determinação da sorção de imazaquin; avaliar a cinética de sorção e dessorção do imazaquin em solos através do método “batch” e; determinar a sorção dependente do tempo do diuron e sua interação com o tamanho dos agregados do solo. Na primeira parte foi avaliada a sorção e a mobilidade do imazaquin em solos com diferentes características químicas, físicas e mineralógicas utilizando as técnicas de deslocamento miscível e “batch”. Com os dados de lixiviação do imazaquin utilizou-se um modelo matemático bicontínuo que considera a sorção sob condições de não-equilíbrio. O modelo forneceu alguns parâmetros de sorção e transporte do imazaquin através da coluna. No método “batch” os dados experimentais foram ajustados à equação de Freundlich, que também forneceu parâmetros de sorção. Na segunda parte foram estudadas a sorção e dessorção do imazaquin em solos com diferentes características químicas e mineralógicas através do uso de isotermas e estudos de cinética e assim quantificar a histerese no processo de sorção-dessorção. Para todos estes ensaios foi utilizado o método “batch”, com os dados das isotermas de sorção e dessorção sendo ajustados pela equação de Freundlich. Os dados de cinética foram ajustados pela equação de Elovich. No terceira e última parte foi avaliada a sorção do diuron em função do tempo de incubação e do tamanho do agregado do solo, assim como a interação destes dois fatores. Em períodos pré-determinados, amostras de solo incubadas com o diuron foram extraídas e oxidadas, obtendo-se as frações em equilíbrio com a solução, sorvida e resíduo-ligado. Com relação aos resultados, o imazaquin apresentou baixa sorção e alta mobilidade em coluna para todos os solos estudados, principalmente o mais arenoso. A curva de eluição do imazaquin ajustou-se ao modelo matemático que considera a sorção ocorrendo sob condição de não-equilíbrio. O método do deslocamento miscível apresentou os menores valores de Kd para o imazaquin, comparado ao método “batch”, sendo atribuída esta diferença ao não-equilíbrio no processo de sorção durante o transporte do imazaquin na coluna. No estudo de sorção/dessorção do imazaquin constatou-se que os coeficientes de sorção do imazaquin foram baixos para todos os solos, com a menor sorção sendo observada no solo RQ que apresenta baixos teores de argila e carbono orgânico do solo. Os coeficientes de dessorção do imazaquin foram maiores que seus coeficientes de sorção, demonstrando ocorrer histerese na dessorção. A histerese foi observada em todos os solos. A sorção do imazaquin ocorreu em duas fases, sendo que a segunda fase, mais lenta, é influenciada por processos difusivos. No estudo de incubação do diuron, houve correlação negativa entre o diuron extraído em solução de CaCl2 e o conteúdo de carbono orgânico no solo. Não foi observada interação entre o tempo de incubação e o tamanho dos agregados, evidenciando que a sorção dependente do tempo, neste caso, não está relacionada à estrutura do solo. A fração sorvida de diuron aumentou com o tempo de incubação, indicando que o processo de sorção é dependente do tempo. / The aim of this study was to evaluate the column flow and batch methods in the measurement of the imazaquin sorption: to evaluate de sorption kinetic and desorption of the imazaquin in soil by batch method and; to evaluate the time-dependent sorption of the diuron and the interaction with the aggregate size of the soil. In the first part it was evaluated the imazaquin mobility and sorption in soils with different mineralogical, physical and chemical characteristics. The imazaquin breakthrough curves were fitted by a mathematical model that considers the nonequilibrium sorption. The model provided sorption and transport parameters. In the batch method the experimental data were fitted to Freudlinch equation, which provided also the sorption parameters. In the second part were studied the imazaquin sorption/desorption in soils with with different mineralogical, physical and chemical characteristics. It was carried out by batch method and kinetics studies, which allowed quantifying the hysteresis in the sorption-desorption process. The experimental data were fitted to the Elovich equation. In the third and last part it was evaluated the time dependent sorption of the diuron and the influence of the aging and aggregate size. Samples of aged soil were extracted and combusted in pre-determined periods. It was obtained the equilibrium, sorbed and bound-residue fractions. Regarding the results, the imazaquin showed low sorption and high mobility in columns for the three soils, mainly the sandy soil. The imazaquin breakthrough curve fitted to the mathematical model that considers the nonequilibrium sorption. The miscible displacement method showed the lower values of the Kd than the batch method. This result was attributed to the nonequilibrium sorption during the imazaquin transport through the column. In the sorption/desorption study it was observed that the imazaquin sorption coefficients were low for the three soils. The RQ soil showed the lowest Kd value. This soil presented the lower clay and organic carbon content. The imazaquin desorption coefficients were higher than the sorption coefficients, evidencing that occurred hysteresis in the process. The imazaquin sorption occurred in two phases. The second phase, which is slower, seems to be influenced by diffusive processes. In the aging experiment it was noted negative correlation between extracted diuron in CaCl2 solution and organic carbon content. It was not observed interaction between the incubation period and aggregate size, demonstrating that the time dependent sorption, in this case, is not related to the soil structure. The sorbed fraction of the diuron increased during the aging, indicating that the sorption process is time dependent.
152

Development of high-resolution tandem mass spectrometer with floated collision cell and curved-field reflectron.

January 2008 (has links)
Li, Gang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 102-108). / Abstracts in English and Chinese. / TABLE OF CONTENTS --- p.v / LIST OF FIGURES --- p.viii / LIST OF TABLES --- p.xi / ABBREVIATIONS --- p.xii / Chapter Chapter One --- Introduction / Chapter 1.1 --- Matrix-assisted Laser Desorption/Ionization (MALDI) --- p.2 / Chapter 1.1.1 --- Laser Desorption --- p.2 / Chapter 1.1.2 --- Matrix-assisted Laser Desorption/Ionization --- p.2 / Chapter 1.2 --- Time-of-flight Mass Spectrometry --- p.6 / Chapter 1.2.1 --- Linear Time-of-flight Mass Spectrometer --- p.6 / Chapter 1.2.2 --- Reflectron Time-of-flight Mass Spectrometer --- p.7 / Chapter 1.2.2.1 --- Linear-field Reflectron --- p.9 / Chapter 1.2.2.2 --- Nonlinear-field Reflectron --- p.12 / Chapter 1.3 --- Structural Analysis Using Time-of-flight Mass Spectrometer --- p.13 / Chapter 1.4 --- Project Objectives --- p.17 / Chapter Chapter Two --- Instrumentation and Experimental / Chapter 2.1 --- Instrumentation --- p.20 / Chapter 2.1.1 --- Laser system --- p.20 / Chapter 2.1.2 --- Flight Tube and Vacuum System --- p.20 / Chapter 2.1.3 --- Ion source --- p.22 / Chapter 2.1.4 --- Deflector and Time Ion Selector --- p.24 / Chapter 2.1.5 --- Two-stage Gridless Reflectron --- p.28 / Chapter 2.1.6 --- "Detectors, Digitizer and Computer System" --- p.28 / Chapter 2.2 --- Experimental --- p.31 / Chapter 2.2.1 --- Sample preparation --- p.32 / Chapter 2.2.2 --- PSD calibration --- p.32 / Chapter Chapter Three --- "Simulation Studies of Time Ion Selector, Collision cells and Curved-field Reflectron" / Chapter 3.1 --- Introduction --- p.35 / Chapter 3.2 --- Time Ion selector --- p.37 / Chapter 3.3 --- Collision cell --- p.46 / Chapter 3.3.1 --- Simulation of Collision Induced Dissociation (CID) Conditions --- p.46 / Chapter 3.3.2 --- Design and Performance Evaluation of Different Collision Cells --- p.48 / Chapter 3.4 --- Curved-field reflectron (CFR) --- p.58 / Chapter 3.4.1 --- Introduction --- p.58 / Chapter 3.4.2 --- Derivation of Analytical Equations --- p.58 / Chapter 3.4.3 --- Effect of Floating Potential of the Collision Cell --- p.65 / Chapter 3.4.4 --- Effect of R and θ Parameters --- p.65 / Chapter 3.4.5 --- Effect of Length of the Reflectron --- p.70 / Chapter 3.5 --- Conclusions --- p.73 / Chapter Chapter Four --- Construction and Performance Evaluation of Modified Time-of-flight Mass Spectrometer / Chapter 4.1 --- Benchmark Results for the Origin Reflectron Time-of-flight Mass Spectrometer --- p.75 / Chapter 4.2 --- Hardware Modifications of Reflectron Time-of-flight Mass Spectrometer --- p.75 / Chapter 4.2.1 --- Collision Cell --- p.75 / Chapter 4.2.2 --- Curved-field Reflectron --- p.79 / Chapter 4.3 --- Evaluation of the Curved-field Reflectron --- p.81 / Chapter 4.4 --- Evaluation of the field-shaped cylindrical collision cell --- p.85 / Chapter 4.5 --- Conclusions --- p.95 / Chapter Chapter Five --- Concluding Remarks / Chapter 5.1 --- Concluding Remarks --- p.100 / References --- p.101 / Appendix / Appendix 1 User program for time ion selection --- p.108 / Appendix 2 User program for gas collision --- p.111 / Appendix 3 MATHEMATICA program used in calculation for curved-fleld reflectron --- p.114
153

Estudo de equilíbrio e cinética da biossorção de cobre (II) por Rhizopus Microsporus. / Equilibrium and kinetics studies of copper (II) biosorption by rhizopus microsporus.

Policarpo, Lucas Makrakis 04 August 2015 (has links)
A poluição relacionada a metais pesados tem recebido uma atenção especial devido a sua alta toxicidade, não biodegradabilidade e tendência de acumular-se na cadeia alimentar. Apesar disso, metais pesados também são considerados recursos valiosos, portanto a sua remoção em conjunto com a sua recuperação torna-se ainda mais importante. Este caso aplica-se aos rejeitos de mineração de cobre, os quais oferecem a possibilidade de recuperação do metal e de sua contenção de maneira segura do meio ambiente. Tais rejeitos se caracterizam por ocuparem enormes áreas inundadas e abrigarem soluções diluídas de cobre (II), porém, muitas vezes, acima dos limites seguros. Diversos processos tradicionais de tratamento mostram-se disponíveis para remover o cobre de tais soluções, no entanto, em certas aplicações eles podem ser ineficientes ou muito onerosos. Nesse contexto, a biossorção é uma alternativa interessante. Nesse processo, certos microrganismos, como fungos, bactérias e algas, ligam-se passivamente ao cobre na forma íons ou outras moléculas em soluções. No presente trabalho foi avaliado o potencial de biossorção de íons cobre (II) pela biomassa do fungo Rhizopus microsporus, coletado e isolado da área de rejeitos da Mina do Sossego, na região norte do Brasil. Isotermas de biossorção foram determinadas experimentalmente em bateladas sob temperatura de 25°C, agitação de 150 rpm, concentração de biomassa de 2,0 a 2,5 g/L e tempo de contato mínimo de 4 horas. O pH mostrou ser um fator importante no equilíbrio da biossorção, sendo o valor máximo da capacidade de biossorção de 33,12 mg de cobre / g biomassa encontrado em pH 6. Valores sucessivamente menores são encontrados pela acidificação da solução, sendo o pH 1 considerado adequado para o processo de dessorção, correspondendo a uma capacidade de biossorção de 1,95 mg/g. Modelos de adsorção de Langmuir e de Freundlich ajustaram-se adequadamente às isotermas tanto com pH controlado quanto não controlado. Foi constatado que a troca iônica é um dos mecanismos envolvidos na biossorção do cobre com Rhizopus microsporus. Tanto o modelo de pseudo-primeira ordem quanto o de pseudo-segunda ordem ajustaram-se aos dados cinéticos da biossorção, sendo que o equilíbrio ocorre em aproximadamente 4 horas. A biomassa conservou a capacidade de biossorção ao operar repetidamente em três ciclos de sorção-dessorção. A biomassa viável e a morta não apresentaram diferença estatisticamente significativa na capacidade de biossorção. / Heavy metal pollution has been receiving a special attention because of the high toxicity of these metals, by their non-biodegradability and by their tendency to accumulate throughout the food chain. Nevertheless, heavy metals are also considered valuable resources, hence their recovery and recycle assumes even greater significance. This is the case of copper mining tailings, which offer the possibility of metal recovery while it must be safely contained from the environment. These wastes are characterized by occupying huge flooded areas with very dilute copper (II) solutions, however, in many cases above safe limits. Various traditional treatment methods are available to remove copper from such solutions; however, for certain applications they may be either ineffective or too costly. In this context, biosorption becomes an interesting alternative. In this process, certain microorganisms such as fungi, bacteria and algae, passively bind to the copper ion or other molecules in solution. In the present study the biosorption potential of copper (II) by the fungal biomass of Rhizopus microsporus, collected and isolated from the tailings area of Sossego mine, located in the northern region of Brazil, has been evaluated. Biosorption isotherms have been experimentally determined by batch experiments at a temperature of 25C, agitation speed of 150 rpm, biosorbent concentration in the range of 2.0 to 2.5 mg/L, and contact time of at least 4 hours. The pH has been found to be a determining factor for the sorption equilibrium, a maximum sorption capacity of 33.12 mg copper / g biomass being found at pH 6. Successively smaller values have been found by the acidification of the solution. A pH value of 1 has been considered adequate for the desorption process, which correspond to a biosorption capacity of 1,95 mg/g. Both Langmuir and Freundlich adsorption models fitted well to equilibrium data using both pH methodologies, however the determination coefficient is slightly higher for the former model. It has been found that ion exchange is one of the mechanisms involved in copper (II) biosorption by Rhizopus microsporus. Both pseudo-first and pseudo-second order models have fitted well to biosorption kinetic data. Equilibrium approaches within approximately 4 hours. The biosorbent has proved to maintain its sorption efficiency after three regeneration cycles. Viable and dead biomasses have not exhibited statistically significant difference in sorption behavior.
154

Computer modelling studies of the diffusion of low moleculer weight cyclic PDMS oligomer in PDMS polymer

Kubai, Thomas January 2007 (has links)
Thesis (MSc.) (Physics) --University of Limpopo, 2007 / Molecular dynamics simulations have been carried out in order to examine the mechanism of diffusion of molecules in amorphous polymer matrix. PDMS model was folded in to a periodic cell, generated by rotational isomeric state (RIS) method at a prescribed temperature and density. Molecular dynamics was used to study transport properties of cyclic PDMS oligomers (hexa-methylcyclotrisiloxane (D3), octa-methylcyclotetrasiloxane (D4) and deca-methylcyclopentasiloxane (D5) using Dreiding and COMPASS force fields. Diffusion coefficients were calculated from the Einstein relation. Only D3 penetrant reached the long time limit from which the Einstein relation is satisfied. Analysis of displacement versus time for all the penetrants in PDMS matrix indicates that the penetrant motion is characterized by relatively long periods interspersed with fairly long and small jumps. Transport of solvent molecules occurs by jumps between individual sections of free volume (cavity/hole) through temporarily open channels. / The National Research Foundation (NRF) and Eskom
155

Thermal profiles in oxygen vacuum swing adsorption (VSA) : modelling, observations and optimisation

Wilson, Simon J. January 2001 (has links)
Abstract not available
156

Thermal profiles in oxygen vacuum swing adsorption (VSA)modelling, observations and optimisation

Wilson, Simon J January 2001 (has links)
Abstract not available
157

Défauts induits par l'implantation d'hélium dans les matériaux à base silicium

Oliviero, Erwan 20 December 2001 (has links) (PDF)
Les recherches présentées dans cette thèse ont été effectuées au Laboratoire de Métallurgie<br />Physique de l'Université de Poitiers ainsi qu'au sein du groupe Defects in Materials appartenant au<br />Interfaculty Reactor Institute de l'Université Technologique de Delft (Pays-Bas).<br />Les exigences concernant la qualité des matériaux semi-conducteurs utilisés en<br />microélectronique deviennent de plus en plus drastiques. En effet, la présence d'impuretés et de<br />défauts cristallographiques peut fortement modifier les caractéristiques des diodes. Il est donc<br />impératif de les contrôler afin d'améliorer les performances des dispositifs. Des études récentes sur<br />les cavités créées dans le silicium par implantation d'hélium à haute dose suivie d'un recuit à haute<br />température, ont montré que ces dernières peuvent être utilisées pour le piégeage d'impuretés<br />métalliques. Le silicium joue un rôle majeur dans la technologie actuelle des semi-conducteurs.<br />Cependant pour de nouvelles applications, en particulier en milieu hostile, le carbure de silicium<br />semble être un candidat prometteur.<br />Les défauts introduits par l'implantation d'hélium dans le silicium et dans le carbure de silicium<br />ont été étudiés par MET (Microscopie Electronique en Transmission). Des techniques<br />complémentaires comme la desorption d'hélium (THDS) et la DRX (Diffraction des Rayons-X) ont<br />également été utilisées. Nous avons observé que dans le cas d'implantations à forte énergie (MeV),<br />de nombreux défauts étendus de type interstitiel sont crées parallèlement à la formation des bulles.<br />Nous avons montré que la formation des bulles dépend fortement du flux et que le taux de<br />production des lacunes est un paramètre déterminant. Les effets du temps de recuit et de la<br />température d'implantation ont également été étudiés. Dans le carbure de silicium, la formation de<br />bulles se produit dans une zone amorphe et l'évolution en cavités a été étudiée en fonction de<br />divers recuit. Une étude par THDS des précurseurs des bulles est également présentée.
158

Constrained thin film desorption through membrane separation

Thorud, Johnathan D. 17 February 2005 (has links)
A constrained thin film desorption scheme has been experimentally tested to determine the desorption rates for water from an aqueous lithium bromide mixture through a confining membrane. Variable conditions include the inlet concentration, pressure differential across the membrane, and channel height. Desorption takes place in a channel created between two parallel plates with one of the walls being both heated and porous. A hydrophobic porous membrane creates a liquid-vapor interface and allows for vapor removal from the channel. Inlet concentrations of 32 wt%, 40 wt%, and 50 wt% lithium bromide were tested at an inlet sub-atmospheric pressure of 33.5 kPa. Pressure differentials across the membrane of 6 kPa and 12 kPa were imposed along with two channel heights of 170 μm and 745 μm. All cases were run at an inlet mass flow rate of 3.2 g/min, corresponding to Reynolds numbers of approximately 2.5 to 4.5. The membrane surface area for desorption was 16.8 cm². A maximum desorption rate (vapor mass flow rate) of 0.51 g/min was achieved, for the 32 wt%, 12 kPa pressure differential, and 170 μm channel. Increasing the pressure differential across the channel allowed for higher desorption rates at a fixed wall superheat, and delayed the transition to boiling. As the inlet concentration increased the desorber's performance decreased as more energy was required to produce a fixed desorption rate. Results are also presented for the variation in the heat transfer coefficient with the wall superheat temperature. The increase in the channel height had a negative influence on the heat transfer coefficient, requiring larger superheat values to produce a fixed desorption rate. / Graduation date: 2005 / Best scan available for tables and computer code in the appendices. The original is faded.
159

The Effects of Changes in Water Content on Uranium(VI) Leaching in Sediment Mixtures Containing Gravel

Moore, Andrew Weber 01 August 2010 (has links)
This study is aimed at understanding the physical and chemical effects that changes in water content have on uranium leaching in sediment containing gravel. It was hypothesized that leaching will be more efficient under unsaturated conditions because flow will be restricted to the smallest pores and will have the most contact with the uranium contaminated sediment. Under saturated conditions, a large portion of the flow will bypass the < 2 mm material, and in turn not come into contact with uranium contaminated material. Batch adsorption and desorption experiments were performed on < 2 mm ERDF sediment to determine the linearity and reversibility of sorption processes and to aid in the interpretation of the leaching experiments. Results of the desorption experiments on aged, contaminated sediments show that the mass percent of sorbed U(VI) released to solution decreased as the sorbed concentration of U(VI) decreased. The opposite trend was observed on freshly contaminated sediments. This indicated that aging increased U(VI) affinity for the solid phase and was attributed to either the crystallization of calcite, which incorporated a portion of the sorbed U(VI) as it crystallized, or the presence of voids in basaltic lithic fragments accessed by diffusion. Column leaching experiments were performed at two water contents on artificially contaminated sediment collected from the Department of Energy’s (DOE) Hanford Site, Washington state. The sediment contained 81.3% gravel (> 2 mm) by mass. Non-reactive tracers were well fit with the convection-dispersion equation (CDE) at both high and low water contents indicating physical equilibrium. The column experimental data were fitted to an analytical solution to the CDE; the results of the modeling show an increase in the distribution coefficient (Kdeffective) with decreasing water content. Several potential explanations for this trend were proposed; one is based on a physical effect in which solute exposure to reactive surfaces changes as a function of water content and the others are based on results of the batch desorption experiments. This work has important implications for the Hanford Site where there is ongoing research regarding the persistence of U(VI) in the vadose zone and underlying aquifer.
160

Methyl arsenic adsorption and desorption behavior on iron oxides

Lafferty, Brandon James 29 August 2005 (has links)
Arsenic is a toxic element that is widely distributed throughout the earth??s crust as a result of both natural geologic processes and anthropogenic activities. In virtually all environments, methylated forms of arsenic can be found. Because of the widespread distribution and toxicity of arsenic and methyl-arsenic, their adsorption behavior on soil minerals is of great interest. Although considerable attention has been given to the behavior of inorganic arsenic on mineral surfaces, little research has been conducted regarding interactions of the methyl-arsenic forms. The objective of this study was to compare the adsorption and desorption behavior of methylarsonate (MMAsV), methylarsonous acid (MMAsIII), dimethylarsinate (DMAsV), dimethylarsinous acid (DMAsIII), arsenate (iAsV), and arsenite (iAsIII) on iron oxide minerals (goethite and ferrihydrite) by means of adsorption isotherms and adsorption envelopes. Additionally, desorption envelopes were obtained using sulfate and phosphate as competitive ligands. Arsenic was measured by FI-HG-AAS. MMAsV and iAsV were adsorbed in higher amounts than DMAsV on goethite and ferrihydrite at all pH values studied. Although MMAsV and iAsV were adsorbed quantitatively at lower concentrations on goethite and ferrihydrite, as arsenic concentration was increased MMAsV was adsorbed in slightly lower quantities than iAsV. DMAsV was not quantitatively adsorbed at any concentration on goethite or ferrihydrite. MMAsV and iAsV exhibited high adsorption affinities on both goethite and ferrihydrite at pH values below 9 and showed decreasing adsorption above this point (more rapidly for MMAsV). DMAsV was adsorbed only at pH values below 8 on ferrihydrite and below 7 on goethite. MMAsV, iAsV, and DMAsV each exhibited adsorption characteristics suggesting specific adsorption on both goethite and ferrihydrite. Increased methyl substitution resulted in increased ease of arsenic release from the iron oxide surface. MMAsIII and DMAsIII exhibited no evidence for any type of specific adsorption under the conditions studied. Phosphate was a more effective desorbing ion than sulfate, but neither desorbed all arsenic species quantitatively.

Page generated in 0.0869 seconds