Spelling suggestions: "subject:"dielectric resonator antenna"" "subject:"dielectric resonator ntenna""
11 |
Reconfigurable Dielectric Resonator AntennasDesjardins, Jason January 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption.
Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles.
One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.
|
12 |
Wideband Dielectric Resonator Antenna Array for Autonomous VehiclesJohansson, Andreas, Müller, Luke January 2023 (has links)
With the rapid advancement of autonomous vehicles, reliable and efficient wireless communication systems with high data rates have become essential for their safe and efficient operation and further evolution. High data rates are found in the higher frequency bands where conductive antennas lack radiation efficiency. To achieve high radiation efficiency, researchers tend towards using Circular Polarized Dielectric Resonator Antennas (CP-DRA). However, there is a lack of studies that cover the FR2 5G bands n257, n258, n261 suggested by 3GPP which is needed if vehicles were to drive across regional borders. This project addresses the challenges of achieving suitable CP-DRA performance for autonomous vehicle communication aimed at covering these FR2 5G bands. The objective is to design and simulate an optimized CP-DRA antenna that meets the required performance characteristics for further use in a phased array for efficient communication in the high-frequency FR2 5G bands. The objective was fulfilled by producing a model of a CP-DRA antenna that covers the mentioned FR2 5G bands. The antenna array achieves this with an axial ratio beam width at plus/minus 20 degrees azimuth angle and peak gain of 9-12 dBi throughout the frequency range. The model consists of four cylindrical resonator antenna elements excited in phase quadrature by a slot aperture feeding network to accomplish the circular polarization. The radiation efficiency of the model is 94% throughout the frequency range with an impedance bandwidth of < -15 dB. A prototype was built and tested that vaguely verified the beam pattern and center frequency. Future work includes building a prototype more comparable to the model for further verification of the circularly polarized gain pattern.
|
13 |
Two Elements Elliptical Slot CDRA Array with Corporate Feeding For X-Band ApplicationsAbdullah, Abdulkareem S., Majeed, Asmaa H., Sayidmarie, Khalil H., Abd-Alhameed, Raed 04 1900 (has links)
Yes / In this paper, a compact two-element cylindrical dielectric resonator antenna (CDRA) array with corporate feeding is proposed for X-band applications. The dielectric resonator antenna (DRA) array is excited by a microstrip feeder using an efficient aperture-coupled method. The designed array antenna is analyzed using a CST microwave studio. The fabricated sample of the proposed CDRA antenna array showed bandwidth extending from 10.42GHz to 12.84GHz (20.8%). The achieved array gain has a maximum of 9.29dBi at frequency of 10.7GHz. This is about 2.06dBi enhancement of the gain in comparison with a single pellet CDRA. The size of the whole antenna structure is about 50 x 50mm2.
|
14 |
Exciting the Low Permittivity Dielectric Resonator Antenna Using Tall Microstrip Line Feeding Structure and Applications2013 August 1900 (has links)
The development of wireless communications increases the challenges on antenna performance to improve the capability of the whole system. New fabrication technologies are emerging that not only can improve the performance of components but also provide more options for materials and geometries. One of the advanced technologies, referred to as deep X-ray lithography (XRL), can improve the performance of RF components while providing interesting opportunities for fabrication.
Since this fabrication technology enables the objects of high aspect ratio (tall) structure with high accuracy, it offers RF/microwave components some unique advantages, such as higher coupling energy and compacted size. The research presented in that thesis investigates the properties of deep XRL fabricated tall microstrip transmission line and describes some important features such as characteristic impedance, attenuation, and electromagnetic field distribution. Furthermore, since most of traditional feeding structure cannot supply enough coupling energy to excite the low permittivity DRA element (εr≤10), three novel feeding schemes composed by tall microstrip line on exciting dielectric resonator antennas (DRA) with low permittivity are proposed and analyzed in this research. Both simulation and experimental measured results exhibit excellent performance.
Additionally, a new simulation approach to realize Dolph-Chebyshev linear series-fed DRA arrays by using the advantages of tall microstrip line feeding structure is proposed. By using a novel T shape feeding scheme, the array exhibits wide band operation due to the low permittivity (εr=5) DRA elements and good radiation pattern due to the novel feeding structure. The tall metal transmission line feed structure and the polymer-based DRA elements could be fabricated in a common process by the deep XRL technology.
This thesis firstly illustrates properties and knowledge for both DRA element and the tall transmission line. Then the three novel feeding schemes by using the tall transmission line on exciting the low permittivity DRA are proposed and one of the feeding structures, side coupling feeding, is analyzed through the simulation and experiments. Finally, the T shape feeding structure is applied into low permittivity linear DRA array design work. A novel method on designing the Dolph-Chebyshev array is proposed making the design work more efficient.
|
15 |
Návrh periodických struktur pro zvýšení směrovosti dielektrických rezonátorových antén / Periodic structure design for directivity enhancement of dielectric resonator antennasSlavíček, Radek January 2018 (has links)
The thesis deals with linearly polarized dielectric rectangular resonator antenna (DRA) operating in the basic mode TEy11 and higher order mode TEy131 at f0 = 10GHz surrounded by an electromagnetic band gap structure (EBG). The dielectric resonator antennas, the EBG structure were designed and a method of integration of both components was developed. The simulated results show a significant improvement of the radiation pattern in the E-plane radiation pattern (narrower main beam, lower level of side lobes, higher directivity) in comparison to a conventional DRA. This was verified by the TEy11 measurement.
|
16 |
Dielektrická rezonátorová anténa na bázi vlnovodu integrovaného do substrátu / Dielectric resonator antenna based on substrate integrated waveguideKubín, Petr January 2013 (has links)
The Master’s thesis deals with the design of the dielectric resonator antenna array based on the substrate integrated waveguide. The work describes various feed methods of the dielectric resonator antenna and the technique of the design of the antenna. The antenna array was designed in the simulative program ANSYS HFSS at the frequency 10 GHz, subsequently fabricated and measured. The antenna array has the bandwidth of 570 MHz for S11 better than –10 dB and the gain of 12.1 dBi.
|
17 |
Balanced dual-segment cylindrical dielectric resonator antennas for ultra-wideband applicationsMajeed, Asmaa H., Abdullah, Abdulkareem S., Sayidmarie, Khalil H., Abd-Alhameed, Raed, Elmegri, Fauzi, Noras, James M. 22 October 2015 (has links)
Yes / In this paper, balanced dual segment cylindrical dielectric antennas (CDRA) with ultra wide-band operation are reported. First a T-shaped slot and L-shaped microstrip feeding line are suggested to furnish a balanced coupling mechanism for feeding two DRAs. Performance of the proposed antenna was analyzed and optimized against the target frequency band. The proposed antenna was then modified by adding a C-shaped strip to increase the gain. The performances of both balanced antennas were characterized and optimized in terms of antenna reflection coefficient, radiation pattern, and gain. The antennas cover the frequency range from 6.4 GHz to 11.736 GHz, which is 58.7% bandwidth. A maximum gain of 2.66 dB was achieved at a frequency of 7 GHz with the first antenna, with a further 2.25 dB increase in maximum gain attained by adding the C-shaped strip. For validation, prototypes of the two antennas were fabricated and tested. The predicted and measured results showed reasonable agreement and the results confirmed good impedance bandwidth characteristics for ultra-wideband operation from both proposed balanced antennas.
|
18 |
Dual Segment S-Shaped Aperture-Coupled Cylindrical Dielectric Resonator Antenna for X-Band ApplicationsMajeed, Asmaa H., Abdullah, Abdulkareem S., Elmegri, Fauzi, Sayidmarie, Khalil H., Abd-Alhameed, Raed, Noras, James M. 12 October 2015 (has links)
Yes / A new low-cost dual-segmented dielectric resonator (DR) antenna design is proposed for wideband applications in the X-band region. Two DRs coupled to an S-shaped slot introduce interesting features. The antenna performance was characterized in terms of the reflection coefficient, gain, and radiation pattern, and detailed simulation studies indicate excellent antenna performance from 7.66 GHz to 11.2 GHz (37.5% fractional bandwidth) with a maximum gain of 6.0 dBi at 10.6 GHz while the fabricated prototype has a matched bandwidth from 7.8 GHz to 11.85 GHz (41% fractional bandwidth) and maximum gain of 6dBi. The antenna is compact, size 1 x 0.83 x 0.327 time the wavelength at 10 GHz. The two DR segments may be located on the same side or on opposite sides of the substrate, giving respectively improved gain or more uniform field patterns. Experimental testing of the prototype performance showed reasonable agreement with the predicted performance.
|
19 |
Model and design of small compact dielectric resonator and printed antennas for wireless communications applications : model and simulation of dialectric resonator (DR) and printed antennas for wireless applications : investigations of dual band and wideband responses including antenna radiation performance and antenna design optimization using parametric studiesElmegri, Fauzi O. M. January 2015 (has links)
Dielectric resonator antenna (DRA) technologies are applicable to a wide variety of mobile wireless communication systems. The principal energy loss mechanism for this type of antenna is the dielectric loss, and then using modern ceramic materials, this may be very low. These antennas are typically of small size, with a high radiation efficiency, often above 95%; they deliver wide bandwidths, and possess a high power handling capability. The principal objectives of this thesis are to investigate and design DRA for low profile personal and nomadic communications applications for a wide variety of spectrum requirements: including DCS, PCS, UMTS, WLAN, UWB applications. X-band and part of Ku band applications are also considered. General and specific techniques for bandwidth expansion, diversity performance and balanced operation have been investigated through detailed simulation models, and physical prototyping. The first major design to be realized is a new broadband DRA operating from 1.15GHz to 6GHz, which has the potential to cover most of the existing mobile service bands. This antenna design employs a printed crescent shaped monopole, and a defected cylindrical DRA. The broad impedance bandwidth of this antenna is achieved by loading the crescent shaped radiator of the monopole with a ceramic material with a permittivity of 81. The antenna volume is 57.0 37.5 5.8 mm3, which in conjunction with the general performance parameters makes this antenna a potential candidate for mobile handset applications. The next class of antenna to be discussed is a novel offset slot-fed broadband DRA assembly. The optimised structure consists of two asymmetrically located cylindrical DRA, with a rectangular slot feed mechanism. Initially, designed for the frequency range from 9GHz to 12GHz, it was found that further spectral improvements were possible, leading to coverage from 8.5GHz to 17GHz. Finally, a new low cost dual-segmented S-slot coupled dielectric resonator antenna design is proposed for wideband applications in the X-band region, covering 7.66GHz to 11.2GHz bandwidth. The effective antenna volume is 30.0 x 25.0 x 0.8 mm3. The DR segments may be located on the same side, or on opposite sides, of the substrate. The end of these configurations results in an improved diversity performance.
|
20 |
Perforovaná dielektrika a dielektrické rezonátorové antény s vyššími módy / Perforated Dielectrics and Higher-Order Mode Dielectric Resonator AntennasMrnka, Michal January 2017 (has links)
Práce se zabývá buzením vyšších módů v kvádrových a válcových dielektrických rezonátorových anténách pro účely zvýšení zisku. Pomocí numerických simulací jsou studovány vlastnosti a limity anténních prvků. Je zkoumáná vzájemní vazba mezi dielektrickými rezonátorovými anténami pracujícími s vyššími vidy a na základě výsledků je možno usuzovat o vhodnosti těchto prvků k popužití v anténních řadách. V práci je popsán analytický model efektivní permitivity perforovaných dielektrik, který respektuje anizotropní povahu tohoto materiálu. Model je založen na Maxwell Garnettové aproximácií nehomogenních materiálů. Dále jsou studovány povrchové vlny na perforovaných substrátech a je ověřena použitelnost teoretického modelu i v tomto případě. Nakonec jsou studovány dielektrické rezonátorové antény vytvořené pomocí perforací v dielektrickém substrátu a je demonstrováno zhoršení určitých vlastností takových antén.
|
Page generated in 0.1028 seconds