Spelling suggestions: "subject:"diffusion surfacing"" "subject:"dediffusion surfacing""
1 |
Modélisation de l'électroperméabilisation à l'échelle cellulaire / Cell electropermeabilization modelingLeguebe, Michael 22 September 2014 (has links)
La perméabilisation des cellules à l’aide d’impulsions électriques intenses, appelée électroperméabilisation, est un phénomène biologique impliqué dans des thérapies anticancéreuses récentes. Elle permet, par exemple, d’améliorer l’efficacité d’une chimiothérapie en diminuant les effets secondaires, d’effectuer des transferts de gènes, ou encore de procéder à l’ablation de tumeurs. Les mécanismes de l’électroperméabilisation restent cependant encore méconnus, et l’hypothèse majoritairement admise par la communauté de formation de pores à la surface des membranes cellulaires est en contradiction avec certains résultats expérimentaux.Le travail de modélisation proposé dans cette thèse est basé sur une approche différente des modèles d’électroporation existants. Au lieu de proposer des lois sur les propriétés des membranes à partir d’hypothèses à l’échelle moléculaire, nous établissons des lois ad hoc pour les décrire, en se basant uniquement sur les informations expérimentales disponibles. Aussi, afin de rester au plus prèsde ces dernières et faciliter la phase de calibration à venir, nous avons ajouté un modèle de transport et de diffusion de molécules dans la cellule. Une autre spécificité de notre modèle est que nous faisons la distinction entre l’état conducteur et l’état perméable des membranes.Des méthodes numériques spécifiques ainsi qu’un code en 3D et parallèle en C++ ont été écrits et validés pour résoudre les équations aux dérivées partielles de ces différents modèles. Nous validons le travail de modélisation en montrant que les simulations reproduisent qualitativement les comportements observés in vitro. / Cell permeabilization by intense electric pulses, called electropermeabilization, is a biological phenomenon involved in recent anticancer therapies. It allows, for example, to increase the efficacy of chemotherapies still reducing their side effects, to improve gene transfer, or to proceed tumor ablation. However, mechanisms of electropermeabilization are not clearly explained yet, and the mostly adopted hypothesis of the formation of pores at the membrane surface is in contradiction with several experimental results.This thesis modeling work is based on a different approach than existing electroporation models. Instead of deriving equations on membranes properties from hypothesis at the molecular scale, we prefer to write ad hoc laws to describe them, based on available experimental data only. Moreover, to be as close as possible to these data, and to ease the forthcoming work of parameter calibration, we added to our model equations of transport and diffusion of molecules in the cell. Another important feature of our model is that we differentiate the conductive state of membranes from their permeable state.Numerical methods, as well as a 3D parallel C++ code were written and validated in order to solve the partial differential equations of our models. The modeling work was validated by showing qualitative match between our simulations and the behaviours that are observed in vitro
|
2 |
Modélisation du comportement des cartouches de protection respiratoire : exposition à des atmosphères complexes de vapeurs organiques et effet des cycles d’utilisation / Modelling of the behaviour of respiratory cartridge filter : exposure in complex atmosphere of organic vapours and effect of reuse cyclesVuong, François 09 December 2016 (has links)
Les vapeurs de composés organiques volatils (COV) représentent un risque chimique pour les travailleurs. Les cartouches de protection respiratoires sont un moyen efficace contre les expositions à ces vapeurs. L’objectif de cette thèse est la modélisation de l’exposition des cartouches dans les situations complexes : présence d'un mélange de vapeurs et cycle d’utilisation, à partir d’une étude expérimentale basée sur l’adsorption dynamique sur colonne. Suite à la contribution de R. Chauveau (thèse UL – 24/11/2014) la présente thèse poursuit l’étude sur la modélisation de l’adsorption des mélanges de vapeurs. Des expositions à des mélanges de COV et une étude cinétique par la méthode chromatographique perturbative ont été effectuées. Le deuxième volet est consacré à la modélisation d’un cycle d’utilisation en 3 étapes (exposition - stockage – réutilisation), pour 6 COV : acétone, acétonitrile, 2-butanone, cyclohexane, dichlorométhane et éthanol. Les temps de claquage ont pu être prédits correctement pour les mélanges acétone/éthanol et cyclohexane/heptane. Une déviation est observée pour le mélange éthanol/cyclohexane car l’équilibre d’adsorption n’a pu être reproduit avec précision par les modèles et parce que la présence d’une covapeur influe grandement sur les cinétiques d’adsorption en mélange. Les travaux ont révélé des failles dans l’approche préventive consistant à assimiler une exposition de mélanges à une exposition à celle du composé le plus volatil en lui affectant la concentration totale du mélange. En ce qui concerne les risques liés à une réutilisation des cartouches, des percées immédiatement après réutilisation (IBUR) ont été observées expérimentalement. Ce comportement a pu être décrit par un modèle de diffusion statique. Le risque d’IBUR est élevé pour les COV diffusant rapidement : l’acétonitrile, l’acétone et le dichlorométhane. Une évaluation est proposée pour distinguer les propriétés du système qui influencent l’apparition de l’IBUR / Volatile organic compounds (VOC) represent a chemical risk for workers. Respiratory protective cartridges are effective equipment against vapours exposure. The objective of the present PhD thesis is the modelling of cartridge exposure in more complex situations: presence of vapours mixture and reuse cycle, from a dynamic adsorption experimental study in column bed. Further to the contribution of R. Chauveau (PhD thesis -24/11/2014), the present manuscript extends the study vapours mixtures adsorption on activated carbon. The second section is devoted to model a cycle use in 3 steps (exposure - storage – reuse), for 6 VOC: acetone, acetonitrile, 2-butanone, cyclohexane, dichloromethane and ethanol. VOC mixtures exposure and kinetic study by the method of perturbative chromatography have been carried out. The service life is correctly predicted for acetone/ethanol and cyclohexane/heptane mixtures. A deviation has been observed for ethanol/cyclohexane mixture because the adsorption equilibrium has not been accurately reproduced by model. These works have also pointed out inconsistency in the preventive approach which assimilates a mixture exposure to single vapour exposure by the most volatile compound at concentration the sum of that of all components of the mixture. Regarding the risks related to cartridge reuse, immediate breakthrough upon reuse (IBUR) has been experimentally recorded. This behaviour can be described by a static diffusion model. The mass transfer in the particle by surface diffusion is the main reason. The risk of IBUR is higher for fast diffusing VOC: acetonitrile, acetone and dichloromethane. An assessment is suggested in order to distinguish the properties of the system which can influence the occurrence of IBUR
|
Page generated in 0.0801 seconds