• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 2
  • 1
  • Tagged with
  • 37
  • 21
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Robust local problem error estimation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes

Grosman, Serguei 05 April 2006 (has links)
Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in the discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both the perturbation parameters of the problem and the anisotropy of the mesh. An estimator that has shown to be one of the most reliable for reaction-diffusion problem is the <i>equilibrated residual method</i> and its modification done by Ainsworth and Babuška for singularly perturbed problem. However, even the modified method is not robust in the case of anisotropic meshes. The present work modifies the equilibrated residual method for anisotropic meshes. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. A numerical example confirms the theory.
22

MPC/LQG-Based Optimal Control of Nonlinear Parabolic PDEs

Hein, Sabine 03 February 2010 (has links)
The topic of this thesis is the theoretical and numerical research of optimal control problems for uncertain nonlinear systems, described by semilinear parabolic differential equations with additive noise, where the state is not completely available. Based on a paper by Kazufumi Ito and Karl Kunisch, which was published in 2006 with the title "Receding Horizon Control with Incomplete Observations", we analyze a Model Predictive Control (MPC) approach where the resulting linear problems on small intervals are solved with a Linear Quadratic Gaussian (LQG) design. Further we define a performance index for the MPC/LQG approach, find estimates for it and present bounds for the solutions of the underlying Riccati equations. Another large part of the thesis is devoted to extensive numerical studies for an 1+1- and 3+1-dimensional problem to show the robustness of the MPC/LQG strategy. The last part is a generalization of the MPC/LQG approach to infinite-dimensional problems.
23

Morphogenetic signaling in growing tissues / Morphogenetische Signalsteuerung in wachsenden Geweben

Bittig, Thomas 15 October 2008 (has links) (PDF)
During the development of multicellular organisms, organs grow to well-defined shapes and sizes. The proper size and patterning of tissues are ensured by signaling molecules as e.g. morphogens. Secreted from a restricted source, morphogens spread into the adjacent target tissue where they form a graded concentration profile. Upon binding of the morphogens to receptors on the cell surfaces, the morphogenetic signal is transduced inside the cell via the phosphorylation of transcription factors, which subsequently regulate the expression of different target genes. Thus, cell fates are determined by the local concentration of such morphogens. In this work, we investigate three key aspects of morphogenetic signaling processes in growing tissues. First, we study the mechanics of tissue growth via cell division and cell death. We examine the rearrangements of cells on large scales and times by developing a continuum theory which describes the growing tissue as an active complex fluid. In our description we include anisotropic stresses generated by oriented cell division, and we show that average cellular trajectories exhibit anisotropic scaling behaviors. Our description is used to study experimentally measured shape changes of the developing wing disk of the fruit fly Drosophila melanogaster. Second, we focus on the spreading of morphogens in growing tissues. We show that the flow field of cell movements due to oriented cell division and cell death causes a drift term in the morphogen transport equation, which captures the stretching and dilution of the concentration profile. Comparing our theoretical results to recent experiments in the Drosophila wing disk, we find that the transport of the morphogen Dpp is mainly intracellular. We moreover show that the decay length of the Dpp gradient increases during development as a result of changing degradation rate and diffusion coefficient, whereas the drift of molecules due to growth is negligible. Thus growth does not affect the decay length of the gradient, but the decay length of the gradient might affect the tissue growth rate as discussed in this work. Finally, we develop a microscopic theoretical description of the intracellular transduction machinery of morphogenetic signals within an individual cell. Our description captures the kinetics of the trafficking of proteins between different cellular compartments in response to receptor-bound signaling molecules. Analyzing experimental data at the Drosophila neuromuscular junction, we show that the morphogenetic signaling is modulated by synaptic signaling via neuronal action potentials.
24

Solution strategies for stochastic finite element discretizations

Ullmann, Elisabeth 16 December 2009 (has links) (PDF)
The discretization of the stationary diffusion equation with random parameters by the Stochastic Finite Element Method requires the solution of a highly structured but very large linear system of equations. Depending on the stochastic properties of the diffusion coefficient together with the stochastic discretization we consider three solver cases. If the diffusion coefficient is given by a stochastically linear expansion, e.g. a truncated Karhunen-Loeve expansion, and tensor product polynomial stochastic shape functions are employed, the Galerkin matrix can be transformed to a block-diagonal matrix. For the solution of the resulting sequence of linear systems we study Krylov subspace recycling methods whose success depends on the ordering and grouping of the linear systems as well as the preconditioner. If we use complete polynomials for the stochastic discretization instead, we show that decoupling of the Galerkin matrix with respect to the stochastic degrees of freedom is impossible. For a stochastically nonlinear diffusion coefficient, e.g. a lognormal random field, together with complete polynomials serving as stochastic shape functions, we introduce and test the performance of a new Kronecker product preconditioner, which is not exclusively based on the mean value of the diffusion coefficient.
25

Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische Randwertaufgaben

Pönitz, Kornelia 11 September 2006 (has links) (PDF)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise gelöst werden können. Spezielle Varianten dieser Methoden sind Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für Probleme mit komplizierten Geometrien, Randschichten, springenden Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann. Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen Teilgebieten miteinander gekoppelt werden. In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode von Nitsche für elliptische Randwertprobleme auf zweidimensionalen polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung mit gemischten Randbedingungen. Weiterhin werden singulär gestörte Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu Eckensingularitäten noch anisotropes Verhalten in Randschichten aufweisen. Für jede dieser drei Problemklassen wird das Nitsche-Mortaring dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne Mortaring erreicht. Numerische Experimente illustrieren die Methode und die Aussagen zur Konvergenz.
26

Solution strategies for stochastic finite element discretizations

Ullmann, Elisabeth 23 June 2008 (has links)
The discretization of the stationary diffusion equation with random parameters by the Stochastic Finite Element Method requires the solution of a highly structured but very large linear system of equations. Depending on the stochastic properties of the diffusion coefficient together with the stochastic discretization we consider three solver cases. If the diffusion coefficient is given by a stochastically linear expansion, e.g. a truncated Karhunen-Loeve expansion, and tensor product polynomial stochastic shape functions are employed, the Galerkin matrix can be transformed to a block-diagonal matrix. For the solution of the resulting sequence of linear systems we study Krylov subspace recycling methods whose success depends on the ordering and grouping of the linear systems as well as the preconditioner. If we use complete polynomials for the stochastic discretization instead, we show that decoupling of the Galerkin matrix with respect to the stochastic degrees of freedom is impossible. For a stochastically nonlinear diffusion coefficient, e.g. a lognormal random field, together with complete polynomials serving as stochastic shape functions, we introduce and test the performance of a new Kronecker product preconditioner, which is not exclusively based on the mean value of the diffusion coefficient.
27

Mathematical Analysis of Charge and Heat Flow in Organic Semiconductor Devices

Liero, Matthias 05 January 2023 (has links)
Organische Halbleiterbauelemente sind eine vielversprechende Technologie, die das Spektrum der optoelektronischen Halbleiterbauelemente erweitert und etablierte Technologien basierend auf anorganischen Halbleitermaterialien ersetzen kann. Für Display- und Beleuchtungsanwendungen werden sie z. B. als organische Leuchtdioden oder Transistoren verwendet. Eine entscheidende Eigenschaft organischer Halbleitermaterialien ist, dass die Ladungstransporteigenschaften stark von der Temperatur im Bauelement beeinflusst werden. Insbesondere nimmt die elektrische Leitfähigkeit mit der Temperatur zu, so dass Selbsterhitzungseffekte, einen großen Einfluss auf die Leistung der Bauelemente haben. Mit steigender Temperatur nimmt die elektrische Leitfähigkeit zu, was wiederum zu größeren Strömen führt. Dies führt jedoch zu noch höheren Temperaturen aufgrund von Joulescher Wärme oder Rekombinationswärme. Eine positive Rückkopplung liegt vor. Im schlimmsten Fall führt dieses Verhalten zum thermischen Durchgehen und zur Zerstörung des Bauteils. Aber auch ohne thermisches Durchgehen führen Selbsterhitzungseffekte zu interessanten nichtlinearen Phänomenen in organischen Bauelementen, wie z. B. die S-förmige Beziehung zwischen Strom und Spannung. In Regionen mit negativem differentiellen Widerstand führt eine Verringerung der Spannung über dem Bauelement zu einem Anstieg des Stroms durch das Bauelement. Diese Arbeit soll einen Beitrag zur mathematischen Modellierung, Analysis und numerischen Simulation von organischen Bauteilen leisten. Insbesondere wird das komplizierte Zusammenspiel zwischen dem Fluss von Ladungsträgern (Elektronen und Löchern) und Wärme diskutiert. Die zugrundeliegenden Modellgleichungen sind Thermistor- und Energie-Drift-Diffusion-Systeme. Die numerische Diskretisierung mit robusten hybriden Finite-Elemente-/Finite-Volumen-Methoden und Pfadverfolgungstechniken zur Erfassung der in Experimenten beobachteten S-förmigen Strom-Spannungs-Charakteristiken wird vorgestellt. / Organic semiconductor devices are a promising technology to extend the range of optoelectronic semiconductor devices and to some extent replace established technologies based on inorganic semiconductor materials. For display and lighting applications, they are used as organic light-emitting diodes (OLEDs) or transistors. One crucial property of organic semiconductor materials is that charge-transport properties are heavily influenced by the temperature in the device. In particular, the electrical conductivity increases with temperature, such that self-heating effects caused by the high electric fields and strong recombination have a potent impact on the performance of devices. With increasing temperature, the electrical conductivity rises, which in turn leads to larger currents. This, however, results in even higher temperatures due to Joule or recombination heat, leading to a feedback loop. In the worst case, this loop leads to thermal runaway and the complete destruction of the device. However, even without thermal runaway, self-heating effects give rise to interesting nonlinear phenomena in organic devices, like the S-shaped relation between current and voltage resulting in regions where a decrease in voltage across the device results in an increase in current through it, commonly denoted as regions of negative differential resistance. This thesis aims to contribute to the mathematical modeling, analysis, and numerical simulation of organic semiconductor devices. In particular, the complicated interplay between the flow of charge carriers (electrons and holes) and heat is discussed. The underlying model equations are of thermistor and energy-drift-diffusion type. Moreover, the numerical approximation using robust hybrid finite-element/finite-volume methods and path-following techniques for capturing the S-shaped current-voltage characteristics observed in experiments are discussed.
28

From local to global: Complex behavior of spatiotemporal systems with fluctuating delay times

Wang, Jian 17 April 2014 (has links) (PDF)
The aim of this thesis is to investigate the dynamical behaviors of spatially extended systems with fluctuating time delays. In recent years, the study of spatially extended systems and systems with fluctuating delays has experienced a fast growth. In ubiquitous natural and laboratory situations, understanding the action of time-delayed signals is a crucial for understanding the dynamical behavior of these systems. Frequently, the length of the delay is found to change with time. Spatially extended systems are widely studied in many fields, such as chemistry, ecology, and biology. Self-organization, turbulence, and related nonlinear dynamic phenomena in spatially extended systems have developed into one of the most exciting topics in modern science. The first part of this thesis considers the discrete system. Diffusively coupled map lattices with a fluctuating delay are used in the study. The uncoupled local dynamics of the considered system are represented by the delayed logistic map. In particular, the influences of diffusive coupling and fluctuating delay are studied. To observe and understand the influences, the results for the considered system are compared with coupled map lattices without delay and with a constant delay as well as with the uncoupled logistic map with fluctuating delays. Identifying different patterns, determining the existence of traveling wave solutions, and specifying the fully synchronized stable state are the focus of this part of the study. The Lyapunov exponent, the master stability function, spectrum analysis, and the structure factor are used to characterize the different states and the transitions between them. The second part examines the continuous system. The delay is introduced into the reactionterm of the Fisher-KPP equation. The focus of this part of study is the time-delay-induced Turing instability in one-component reaction-diffusion systems. Turing instability has previously only been found in multiple-component reaction-diffusion systems. However, this work demonstrates with the help of the stability exponent that fluctuating delay can result in Turing instability in one-component reaction-diffusion systems as well. / Ziel der vorliegenden Arbeit ist die Untersuchung der Einflüsse der zeitlich fluktuierenden Verzögerungen in räumlich ausgedehnten diffusiven Systemen. Durch den Vergleich von Systemen mit konstanter Verzögerung bzw. Systemen ohne räumliche Kopplung erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise der Dynamik des räumlich ausgedehnten diffusiven Systems mit fluktuierenden Verzögerungen. Im ersten Teil werden diskrete Systeme in Form von diffusiven Coupled Map Lattices untersucht. Als die lokale iterierte Abbildung des betrachteten Systems wird die logistische Abbildung mit Verzögerung gewählt. In diesem Teil liegt der Fokus auf Musterbildung, Existenz von Multiattraktoren und laufenden Wellen sowie der Möglichkeit der vollen Synchronisation. Masterstabilitätsfunktion, Lyapunov Exponent und Spektrumsanalyse werden benutzt, um das dynamische Verhalten zu verstehen. Im zweiten Teil betrachten wir kontinuierliche Systeme. Hier wird die Fisher-KPP Gleichung mit Verzögerungen im Reaktionsteil untersucht. In diesem Teil liegt der Fokus auf der Existenz der Turing Instabilität. Mit Hilfe von analytischen und numerischen Berechnungen wird gezeigt, dass bei fluktuierenden Verzögerungen eine Turing Instabilität auch in 1-Komponenten-Reaktions-Diffusionsgleichungen gefunden werden kann
29

Symmetric Fractional Diffusion and Entropy Production

Prehl, Janett, Boldt, Frank, Hoffmann, Karl Heinz, Essex, Christopher 30 August 2016 (has links) (PDF)
The discovery of the entropy production paradox (Hoffmann et al., 1998) raised basic questions about the nature of irreversibility in the regime between diffusion and waves. First studied in the form of spatial movements of moments of H functions, pseudo propagation is the pre-limit propagation-like movements of skewed probability density function (PDFs) in the domain between the wave and diffusion equations that goes over to classical partial differential equation propagation of characteristics in the wave limit. Many of the strange properties that occur in this extraordinary regime were thought to be connected in some manner to this form of proto-movement. This paper eliminates pseudo propagation by employing a similar evolution equation that imposes spatial unimodal symmetry on evolving PDFs. Contrary to initial expectations, familiar peculiarities emerge despite the imposed symmetry, but they have a distinct character.
30

Defektkorrekturverfahren für singulär gestörte Randwertaufgaben / Defect Correction Methods for Singularly Perturbed Boundary Value Problems

Fröhner, Anja 27 December 2002 (has links) (PDF)
Wir untersuchen ein Defektkorrekturverfahren, das ein einfaches Upwind-Differenzenverfahren erster Ordnung mit einem zentralen Differenzenverfahren kombiniert, für ein- und zweidimensionale singulär gestörte Konvektions-Diffusions-Probleme auf einer Klasse von Shishkin-Typ-Gittern. Im eindimensionalen Fall wird nachgewiesen, dass das Verfahren von (fast) zweiter Ordnung, gleichmäßig bezüglich des Diffusionsparameters $\epsilon$ konvergiert. Zur Konvergenzanalyse für das zweidimensionale Modellproblem werden verschiedene Techniken diskutiert. In einem Spezialfall kann auf einem stückweise uniformen Shishkin-Gitter die $\epsilon$-gleichmäßige Konvergenz des Verfahrens von fast zweiter Ordnung gezeigt werden. Ferner sind die bisher bekannten Stabilitätsaussagen und ihre Verwendung zur Konvergenzanalysis der betrachteten Differenzenverfahren sowie Methoden zur Analyse von Defektkorrekturverfahren zusammengestellt. Einige Bemerkungen zu Defektkorrekturverfahren und Finite-Elemente-Methoden schließen die Arbeit ab. Numerische Experimente untermauern die theoretischen Resultate. / We consider a defect correction method that combines a first-order upwinded difference scheme with a second-order central difference scheme for model singularly perturbed convection-diffusion problems in one and two dimensions on a class of Shishkin-Type meshes. In one dimension, the method is shown to be convergent uniformly in the diffusion parameter $\epsilon$ of second order in the discrete maximum norm. To analyze the two-dimensional case, we discuss several proof techniques for defect correction methods. For a special problem with constant coefficients on a piecewise uniform Shishkin-mesh we can show the second order convergence of the considered scheme, uniformly with respect to the diffusion parameter. Moreover the known stability properties and their impact on the convergence analysis of the considered differnce schemes are compiled. Some remarks on defect correction and finite elements conclude the theses. Numerical experiments support our theoretical results.

Page generated in 0.0886 seconds