Spelling suggestions: "subject:"dimensionless"" "subject:"simensionless""
31 |
Étude de l'ébullition sur plaque plane en microgravité, application aux réservoirs cryogéniques des fusées Ariane V / Study of nucleate boiling in microgravity conditions, aplicated to the ArineV cryogenics tanksKannengieser, Olivier 18 December 2009 (has links)
Ce rapport de thèse porte sur une étude expérimentale et théorique de l'ébullition en microgravité. Les expériences furent réalisées en condition de gravité terrestre, en vol parabolique et en fusée-sonde. Les expériences en vol parabolique ont montré l'influence de divers paramètres sur le transfert thermique et ont mis en évidence les mécanismes contrôlant le transfert thermique. De l'écriture des équations gouvernant ces mécanismes et de l'identification des échelles caractéristiques, une corrélation permettant d'estimer le transfert de chaleur lors de l'ébullition en microgravité pour une large gamme de fluide est bâtie. L'expérience en fusée-sonde a permis d'étudier l'influence des gaz incondensables et notamment de la convection Marangoni sur le comportement de l'ébullition et sur le transfert thermique. / Between the different propulsion phases, the Ariane V rocket passes through microgravity periods and solar radiation can induce boiling in its cryogenics tanks. Experiments were performed during 6 parabolic flights and in a sounding rocket to study pool boiling in microgravity. In the parabolic flight experiments, the influence of pressure, subcooling and surface roughness was studied. It is showed that subcooling has a weak effect on microgravity boiling heat transfer, and that roughness is an important factor also in microgravity. Detailed results on the behavior of bubbles and on the superheated liquid layer show that the heat transfer mechanisms can be divided in two groups : the primary mechanisms which directly take energy from the wall and the secondary mechanisms which transport the energy stored in the fluid by the primary mechanisms, from the vicinity of the wall to the bulk liquid. The secondary mechanisms appear not to limit primary mechanism heat transfer which explains the weak influence of gravity on heat transfer. From the study of equations governing primary mechanisms and the definition of new scales, a correlation is built to predict heat transfer in microgravity for a wide variety of fluids. In the sounding rocket experiment, the influence of non-condensable gases was studied. The existence of two regimes of boiling heat transfer with non-condensable gas is established. The temperature in the primary bubble is directly measured and the influences of both Marangoni convection and non-condensable gas on both heat transfer and bubble growth are also considered.
|
32 |
DESIGN METHODS FOR LARGE RECTANGULAR INDUSTRIAL DUCTSThanga, Tharani 10 1900 (has links)
<p>A large rectangular industrial duct consists of plates stiffened with parallel wide flange sections. The plates along with stiffeners acts to resist the pressure loads and to carry other loads to the supports. The behaviours of the components of large industrial ducts are significantly different from the behaviours on which the current design methods are based on. Investigation presented herein deals with the design methods for spacing stiffeners, proportioning stiffeners and calculating shear resistance of side panel.</p> <p>Current method of spacing stiffeners is based on large deflection plate theory. A parametric study was conducted on dimensionless parameters identified in order to benefit from membrane action in partially yielding plate for spacing stiffeners. Design equations were established in terms of dimensionless pressure, plate slenderness and normalized out-of-plane deflection for three cases namely; 0%, 16.5% and 33% of through thickness yielding of the plate. Results show that approximately 50% increase in stiffener spacing when yielding of 16.5% of thickness is permitted.</p> <p>Under suction type pressure load, the unsupported compression flange and restrained tension flange lead to distortional buckling of the stiffeners. The current methods do not address distortional buckling adequately. A parametric study on dimensionless parameters governing the behaviour and strength of stiffened plat panels was conducted. The study indicated that the behaviour and strength of the stiffened panels could be a function of web slenderness and overall slenderness of the stiffener. The study also identified the slenderness limit of stiffener web for which the stiffener reaches the yield moment capacity. This study demonstrated the conservatism of current method. Finally a method was established to calculate the strength of stiffened plate panel subjected lateral pressure.</p> <p>Side panels adjacent to the supports transfer large amount of shear to the supports and, in addition, resist internal pressure. Currently the design of side panels for shear is based on the methods used for the web of fabricated plate girders. The behaviour and the characteristics between the web of plate girder and the thin side panels are significantly different. A parametric study was conducted on dimensionless parameters identified. It was concluded that the plate slenderness dominates the normalized shear strength of stockier side panels. The aspect ratio and plate slenderness influence the normalized shear strength of slender side panels. Design methods to calculate the shear strength of side panels were proposed.</p> / Doctor of Philosophy (PhD)
|
Page generated in 0.0578 seconds