Spelling suggestions: "subject:"dinâmicos"" "subject:"cinâmicos""
341 |
Leis de escala associadas à quebra de simetria da distribuição de energia em um conjunto de sistemas dinâmicos : aplicações em mapeamentos discretos /Silva, Matheus Palmero. January 2017 (has links)
Orientador: Edson Denis Leonel / Coorientador: Peter Vaughan Elsmere McClintock / Banca: Roberto E. Lagos Monaco / Banca: Roberto Venegeroles Nascimento / Resumo: Nesta dissertação, investigamos propriedades estatísticas de alguns sistemas dinâmicos descritos por mapeamentos discretos nas proximidades de duas transições: (i) integrabilidade para não integrabilidade e; (ii) crescimento limitado de energia para crescimento ilimitado de energia (aceleração de Fermi). O foco principal está na descrição do comportamento da distribuição de probabilidade da velocidade/energia das partículas em dinâmica caótica. A quebra de simetria da distribuição de probabilidade leva a uma escala adicional àquelas já conhecidas na literatura e, com este estudo, acreditamos que a quebra de simetria também possa explicar um fenômeno que já vem sendo observado em mapeamentos discretos. Fenômeno este, até então descrito apenas fenomenologicamente, teve sua primeira observação na publicação seminal de investigação de leis de escala em mapeamentos discretos no periódico Phys. Rev. Let. 93, 014101 (2004), de Edson D. Leonel, Peter V. E. McClintock e Jafferson K. L. Silva. Nossa contribuição para o problema está no desenvolvimento de descrições analíticas e verificações numéricas, baseadas em um estudo sistemático do comportamento difusivo das trajetórias caóticas no espaço de fases dos sistemas dinâmicos de interesse / Abstract: In this dissertation, we investigate statistical properties of some dynamical systems described by discrete mappings near two types of transitions: (i) integrability to non-integrability; (ii) limited to unlimited diffusion in energy (Fermi acceleration). The main goal is to describe the behaviour of the probability density of the velocity/energy for a set of particles moving in a chaotic dynamics. The break of symmetry in the probability distribution leads to an additional scaling to those are already known in the literature and, with this study, we believe that the symmetry break might also explain a well-known phenomenon observed for discrete mappings. This phenomenon, it has been reported so far phenomenologically. A first observation in an area-preserving mapping was in a letter published in Phys. Rev. Let. 93, 014101 (2004), authored by Edson D. Leonel, Peter V. E. McClintock and Jafferson K. L. Silva. Our contribution to the problem is on the development of an analytical approach and numerical verifications, based essentially on a systematic study of the diffusive behaviour of chaotic trajectories on the phase space of dynamical systems of interest / Mestre
|
342 |
Dinâmica, combinatória e ergodicidade / Dynamics, combinatorics and ergodicityMoretti Junior, Nilton Cesar 30 August 2017 (has links)
Submitted by Nilton Cesar Moretti Junior null (niiilton@hotmail.com) on 2018-07-31T04:58:47Z
No. of bitstreams: 1
Dissertação-Final.pdf: 1149444 bytes, checksum: 6c44dc0b9f2462ee08c23da4a240fa0a (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-07-31T18:13:18Z (GMT) No. of bitstreams: 1
morettijunior_nc_me_sjrp.pdf: 1461434 bytes, checksum: 7a6418b1192346448fc927ec6c6650dc (MD5) / Made available in DSpace on 2018-07-31T18:13:18Z (GMT). No. of bitstreams: 1
morettijunior_nc_me_sjrp.pdf: 1461434 bytes, checksum: 7a6418b1192346448fc927ec6c6650dc (MD5)
Previous issue date: 2017-08-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho estudamos vários resultados relacionados com sistemas dinâmicos, teoria dos números e combinatória. Em particular, provamos os teoremas de Van Der Waerden, Szemeredi, Koksma e Weyl. / In this work we study several results connected with dynamical systems, number thoery and combinatorics. In particular, we prove Van Der Waerden, Szemer edi, Koksma and Weyl’s theorems.
|
343 |
Investigação de escala para a bifurcação tangente no mapa logístico /Hermes, Joelson Dayvison Veloso. January 2018 (has links)
Orientador: Edson Denis Leonel / Banca: Denis Gouvea Ladeira / Banca: Juliano Antônio de Oliveira / Resumo: Neste projeto aplicamos o formalismo de escala com o objetivo de explorar a evolução em direção ao equilíbrio perto de uma bifurcação tangente no mapa logístico. No ponto de bifurcação a órbita segue o caminho descrito por uma função homogênea com expoentes críticos bem definidos. Perto da bifurcação, a convergência para o equilíbrio é exponencial, cujo tempo de relaxação é marcado por uma lei de potência. Para obtermos os expoentes utilizamos dois procedimentos distintos: (1) o primeiro, fenomenológico, envolvendo hipóteses de escala, com o qual determinamos uma lei de escala entre os 3 expoentes críticos; (2) o segundo transforma uma equação de diferenças em uma equação diferencial, sendo resolvida com condições iniciais convenientes. Os resultados analíticos confirmam bem os resultados encontrados numericamente / Abstract: In this project we apply the scaling formalism to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation into logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function with well de ned critical exponents. Near the bifurcation, the evolution to the equilibrium is described by an exponential function whose relaxation time is described by a power law. We use two di erent approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) a procedure transforming the di erence equation into a di erential equation which is solved under appropriate conditions. The numerical results give support for the theoretical approach / Mestre
|
344 |
Análise de escala no mapa padrão dissipativo descontínuo /Carneiro, Bárbara Pinto. January 2018 (has links)
Orientador: Juliano Antônio de Oliveira / Banca: Rene Orlando Metrano Torricos / Banca: Priscilla Andressa de Souza Silva / Resumo: Neste trabalho consideramos o mapa padrão descrito nas variáveis momento e ângulo, a partir do movimento de um rotor pulsado. Uma vez definido o modelo para o caso conservativo, construímos o espaço de fase para analisar a dinâmica do sistema. Observamos um mar caótico ao redor de ilhas periódicas e limitado por um conjunto de curvas invariantes spannig. Para caracterizar o caos, usamos os expoentes de Lyapunov. Estendemos os nossos estudos introduzindo dissipação no sistema. Dada a escolha dos parâmetros de controle, observamos que a estrutura mista observada no sistema conservativo decai exponencialmente para atratores caóticos. Os expoentes de Lyapunov foram usados para caracterizar os atratores caóticos. Introduzimos uma função de descontinuidade no sistema para investigar a raiz quadrada da variável ação quadrática média ao longo dos atratores caóticos. Uma lei de escala foi estabelecida e os expoentes de escala são encontrados numericamente. Finalmente, discutimos uma abordagem analítica para a variável ação quadrática média no mapeamento padrão dissipativo descontínuo / Abstract: In this work we consider the standard map described in the momentum and angle variables from the movement of a kicked rotor. Once the model for the conservative case is defined, we build the phase space to analyze the dynamics of the conservative system. We observe a chaotic sea surrounding periodic islands and limited by a set of invariant spannig curves. To characterize chaos we use the Lyapunov exponents. We extend our studies introducing dissipation in the system. Given the chose of the control parameters we obseve that the mixed structure observed in the conservative case decay exponentially for large chaotic attactors. The Lyapunov exponents were used to characterize the chaotic attactors. We introduce a discontinuity function in the system to investigate the root mean square of the quadratic action variable along of the chaotic attractors. A scaling law was established and the scaling exponents are found numerically. Finally a analytical approach for the quadratic mean action variable in the dissipative discontinuous standard mapping is discussed / Mestre
|
345 |
Investigação da difusão caótica em mapeamentos Hamiltonianos /Kuwana, Célia Mayumi. January 2018 (has links)
Orientador: Edson Denis Leonel / Banca: Denis Gouvêa Ladeira / Banca: Ricardo Egydio de Carvalho / Resumo: Neste trabalho apresentaremos e discutiremos algumas propriedades dinâmicas para uma família de mapeamentos discretos que preservam a área no espaço de fases nas variáveis momentum, I, e coordenada generalizada, θ. O mapeamento é descrito por dois parâmetros de controle, sendo eles ε, ajustando a intensidade da não linearidade, e γ, um parâmetro que fornece a forma da divergência da variável "θ"no limite em que I → 0. O parâmetro ε controla a transição de integrabilidade, quando ε = 0, para não integrabilidade, no limite em que ε ≠ 0. O objetivo principal deste trabalho é descrever o comportamento das curvas do momentum médio, I_RMS(ε,n), em função de n, a partir de uma função de probabilidade, P(I(n)), de observar um determinado momentum I em um instante n. Para tanto, resolveremos a Equação da Difusão analiticamente, considerando os casos: (i) o momentum inicial nulo, I_0 = 0, e (ii) o momentum inicial não nulo, I_0 ≠ 0. Nossos resultados descrevem bem os resultados fenomenológicos conhecidos na literatura (Physics Letters A, 379: 1808 (2015)) / Abstract: In this work we will present and discuss some dynamical properties of a family of mappings that preserves area in the phase space for two variables momentum, I, and generalized coordinate, θ. The mapping is controled by two parameters: ε, tunning the intensity of nonlinearity, and γ, that describes the form of divergence of θ when I → 0. The parameter ε defines a transition from integrability, when ε = 0, to nonintegrability, when ε ≠ 0. The main goal of this work is to describe the curves of average momentum, I_RMS(ε,n), in terms of n, from a probability function, P(I(n)), to observe a determined momentum I at an instant n. Therefore, we will solve the Diffusion equation analitically considering the cases: (i) the initial momentum is null, I_0 = 0, and (ii) the initial momentum is nonzero, I_0 ≠ 0. Our results describe well the known phenomenological results in literature (Physics Letters A, 379: 1808 (2015)) / Mestre
|
346 |
Aspectos algébricos de sistemas dinâmicosEndler, Antônio January 2002 (has links)
Este trabalho trata o problema genérico da obtenção analítica exata das variedades algébricas que definem domínios de estabilidade e multiestabilidade para sistemas dinâmicos dissipativos com equações de movimento definidas por funções racionais. Apresentamos um método genérico, válido para qualquer sistema dinâmico, que permite reduzir a análise de sistemas multidimensionais arbitrários à análise de um sistema unidimensional equivalente. Este método é aplicado ao mapa de Hénon, o exemplo paradigmático de sistema multidimensional, para estudar a estrutura aritmética imposta pela dinâmica das órbitas de períodos 4, 5, e 6, bem como seus domínios de estabilidade no espaço de parâmetros. Graças à obtençao de resultados analíticos exatos, podemos explorar pela primeira vez as peculariedades de cada um dos períodos mencionados. Algumas das novidades mais marcantes encontradas são as seguintes: Para período 4, encontramos um domínio de multiestabilidade caracterizado pela coexistência de duas órbitas definidas em corpos algébricos distintos. Observamos a existência de discontinuidades na dinâmica simbólica quando os parâmetros são mudados adiabáticamente ao longo de circulações fechadas no espaço de parâmetros e explicamos sua origem algébrica. Publicamos tais resultados em dois artigos: Physica A, 295, 285-290(2001) e Physical Review E, 65, 036231 (2002). Para período 5, obtivemos a variedade algébrica que define o "camarão" (shrimp) característico, obtemos uma expressão analítica para todas as órbitas de período 5, classificamos todas as singulariedades presentes no espaço de parâmetros e analisamos todas as mudanças que ocorrem ao circular-se em torno de tais singulariedades. Para período 6, da expressão analítica que fornece todas as órbitas, encontramos um resultado muito surpreendente, o mais notável desta dissertação: a possibilidade de coexistência de órbitas reais e complexas estáveis, para valores reais dos parâmetros físicos. Resultados preliminares parecem indicar serem tais órbitas complexas uma espécie de órbitas fantasmas, com semelhanças as órbitas encontradas por Gutzwiller para sistemas Hamiltonianos (não- dissipativos).
|
347 |
Criação e visualização de domínios dinâmicos em ambientes de gerenciamento de redes / Definition and visualization of dynamic domains in network management environmentsCeccon, Márcio Bartz January 2003 (has links)
No contexto do gerenciamento de redes de computadores, domínios são recursos utilizados para agrupar objetos gerenciáveis. Os mapas de rede utilizados pelos sistemas de gerenciamento são exemplos bastante comuns do uso de domínios. Domínios são importantes porque as ações de gerenciamento podem ser aplicadas a todos os objetos gerenciáveis membros de um domínio ao mesmo tempo, não sendo necessário, então, repetir a mesma ação em cada objeto gerenciável, um a um. Domínios que necessitam ser rapidamente criados, utilizados e descartados são referenciados nesta dissertação de mestrado como domínios dinâmicos. Atualmente, na maioria dos sistemas de gerenciamento de redes não existem facilidades disponíveis para suportar o conceito desse tipo de domínios. Em relação aos aspectos de visualização, a apresentação visual de domínios deve ser realizada de forma adequada, visto que, atualmente, as GUIs estão presentes na maioria dos sistemas de gerenciamento. Entretanto, os processos de visualização de domínios utilizados pelos sistemas de gerenciamento atuais apresentam limitações em relação à configuração de características visuais dos domínios apresentados. Essas características são estáticas, não permitindo ao usuário, dessa forma, escolher como deseja visualizar um determinado domínio. Nesta dissertação de mestrado são apresentados a definição e o desenvolvimento de duas novas linguagens que têm por objetivo aperfeiçoar a criação e a visualização de domínios dinâmicos. A primeira linguagem é baseada em um modelo de informação do ambiente gerenciado e é utilizada para criar, de forma automatizada, novos domínios dinâmicos. Tal modelo de informação é formado por classes, atributos e relacionamentos entre as classes. A segunda linguagem, por sua vez, é usada para configurar características visuais dos domínios dinâmicos criados por meio da primeira linguagem. Esta dissertação apresenta, também, um protótipo desenvolvido para suportar as linguagens de criação e visualização de domínios dinâmicos criadas. A partir desse protótipo, é possível criar domínios dinâmicos relacionados a informações da rede de computadores utilizada, bem como personalizar a visualização dos domínios dinâmicos criados. Além disso, o protótipo possibilita, também, a obtenção de algumas informações dos membros dos domínios dinâmicos criados. O protótipo é baseado na Web e foi desenvolvido utilizando-se as tecnologias PRECCX, PHP, MySQL e SNMP. Como será visto ao final, as linguagens definidas e o protótipo desenvolvido mostram que o suporte a domínios dinâmicos objetivado pode ser efetivo e melhorar, sensivelmente, os processos de gerenciamento de redes. A integração da implementação desenvolvida junto ao ambiente QAME, por exemplo, permite atualmente que os administradores possam selecionar, através das linguagens, os equipamentos de uma rede com QoS que precisam ser configurados através do processo de aplicação de políticas original do QAME. / In the computer networks management context, domains are facilities used to group managed objects. The network maps presented in the management systems are the most common examples of the use of domains. Domains are important because the management actions can be applied to all managed objects that are members of a domain at the same time, not being necessary, then, to repeat the same action in each managed object one by one. Domains that need to be quickly created, used and discarded are referenced in this work as dynamic domains. Currently, in the majority of the available network management systems there are no proper facilities to support this type of domains. Concerning the visualization aspects, the domains visual presentation must be carried through of adjusted form, since, currently, the GUIs are present in the majority of the management systems. However, the domains visualization processes used by the current management systems present limitations related to the visual features configuration of the presented domains. These features are static, not allowing the user, this way, to choose how he or she desires to visualize one determined domain. This work presents the definition and the development of two new languages whose goals is to enhance the creation and the visualization of dynamic domains. The first language is based on a managed environment information model and is used to create, forming an automated fashion, new dynamic domains. Such information model is formed by classes, attributes and relationships between the classes. The second language, on its turn, is used to configure visual features of the dynamic domains created by the first language. This work also presents a prototype developed to support the defined dynamic domains creation and visualization languages. With this prototype it is possible to create dynamic domains based on the information of the computer network used, as well as customizing the visualization of the dynamic domains created. Moreover, the prototype makes possible the attainment of some members information of the dynamic domains created. The prototype is based on the Web and was developed using technologies as PRECCX, PHP, MySQL and SNMP. As will be seen in the end, the defined languages and the developed prototype shows that the desired dynamic domains support can be effective and improve, significantly, the network management processes. The integration of the implementation developed together to the QAME environment, for example, allows currently that the administrators can select, through the languages, the QoS network devices that need to be configured through the original policies application process of the QAME.
|
348 |
A sincronização de osciladores de Rössler acopladosHeisler, Ismael Andre January 2002 (has links)
Neste trabalho utiliza-se como sistema dinâmico o circuito eletrônico que integra o sistema de equações acopladas de Rossler modificado. Este sistema possui uma nãolinearidade dada por uma função linear por partes e apresenta comportamento caótico para certos valores dos seus parâmetros. Isto e evidenciado pela rota de dobramento de período obtida variando-se um dos parâmetros do sistema. A caracterização experimental da dinâmica do sistema Rossler modificado e realizada através do diagrama de bifurcações. Apresenta-se uma fundamentação teórica de sistemas dinâmicos introduzindo conceitos importantes tais como atratores estranhos, variedades invariantes e tamb em uma análise da estabilidade de comportamentos assintóticos como pontos fixos e ciclos limites. Para uma caracterização métrica do caos, apresenta-se a definção dos expoentes de Lyapunov. São introduzidos também os expoentes de Lyapunov condicionais e transversais, que estão relacionados com a teoria de sincronizção de sistemas caóticos. A partir de uma montagem mestre-escravo, onde dois osciladores de Rossler estão acoplados unidirecionalmente, introduz-se a de nição de sincronização idêntica, sincronização de fase e variedade de sincronização. Demonstra-se a possibilidade de sincronização em uma rede de osciladores caóticos de Rossler, acoplados simetricamente via acoplamento de primeiros vizinhos. A rede composta por seis osciladores mostrou ser adequada pelo fato de apresentar uma rica estrutura espacial e, ao mesmo tempo, ser experimentalmente implementável. Além da sincronização global (osciladores identicamente sincronizados), obtém-se a sincronização parcial, onde parte dos osciladores sincronizam entre si e a outra parte não o faz. Esse tipo de sincronização abre a possibilidade da formação de padrões de sincronização e, portanto, exibe uma rica estrutura de comportamentos dinâmicos. A sincronização parcial e investigada em detalhes e apresentam-se vários resultados. A principal ferramenta utilizada na análise experimental e numérica e a inspeção visual do gráfico yi yj , fazendo todas as combinações entre elementos diferentes (i e j) da rede. Na análise numérica obtém-se como resultado complementar o máximo expoente de Lyapunov transversal, que descreve a estabilidade da variedade de sincronização global.
|
349 |
Simulação e controle de um sistema de suspensão simplificadoAlmeida, Ana Cristina Rebés January 2002 (has links)
As aplicações da mecânica vibratória vêm crescendo significativamente na análise de sistemas de suspensões e estruturas de veículos, dentre outras. Desta forma, o presente trabalho desenvolve técnicas para a simulação e o controle de uma suspensão de automóvel utilizando modelos dinâmicos com um, dois e três graus de liberdade. Na obtenção das equações do movimento para o sistema massa-mola-amortecedor, o modelo matemático utilizado tem como base a equação de Lagrange e a segunda lei de Newton, com condições iniciais apropriadas. A solução numérica destas equações é obtida através do método de Runge-Kutta de 4ª ordem, utilizando o software MATLAB. Para controlar as vibrações do sistema utilizou-se três métodos diferentes de controle: clássico, LQR e alocação de pólos. O sistema assim obtido satisfaz as condições de estabilidade e de desempenho e é factível para aplicações práticas, pois os resultados obtidos comparam adequadamente com dados analíticos, numéricos ou experimentais encontrados na literatura, indicando que técnicas de controle como o clássico podem ser simples e eficientes.
|
350 |
Propriedades métricas de sistemas multiparamétricos discretosTorrico Chávez, César Abraham January 2008 (has links)
Neste trabalho estudamos propriedades métricas de certas estruturas recentemente descobertas em diagramas de fase, chamadas de conjuntos tipo de Mandelbrot. Tais estruturas (conjuntos) são importantes pois aparecem repetidamente em sistemas dinâmicos, em particular, em equações diferenciais que descrevem lasers e outros modelos físicos. De particular interesse, são escalonamentos (scalings) de codimensão 2, i.e. que dependem da variação simultânea de dois parâmetros físicos para serem observados. Através da obtenção de expressões exatas dos pontos de nascimento de domínios de estabilidade {"fiores de cactus'?, conseguimos demonstrar analiticamente que a velocidade de acumulação dos domínios convergepara um valor limite constante igual à unidade. Outras taxas de convergência tais como, por exemplo, a orientação do eixo dos domínios com respeito à horizontal, a diminuição das alturas e das áreas dos domínios, também convergem para a unidade. Tal convergência foi também por nós encontrada no conjunto de Mandelbrot. Em ambos casos as convergências obedecem uma lei de potência com expoentes inteiros, em forte contraste com a convergência típica de Feigenbaum, que também segue uma lei de potências, porém com expoente fracionário. Por razões discutidas em detalhe dentro do trabalho, conjecturamos ser o escalonamento unitário de carácter geral sempre que se tenham fam{lias de fases periódicas participando de um processo de acumulação com adição de períodos. Observamos que os conjuntos de números racionais (números de rotação) que rotulam as infinitas fam{lias de fiores, (fases periódicas) nos conjuntos tipo-Mandelbrot, também exibem a mesma convergência unitária. Tal fato nos leva a crer que, dum ponto de vista teórico, este "scaling"parece originar-se de propriedades métricas dos racwna%s. Além disto, complementamos o estudo das propriedades métricas dos conjuntos tipo-Mandelbrot com um estudo detalhado da sua estrutura interna, via multiplicadores das órbitas periódicas estáveis, reais e complexas. Observamos que a parte real (imaginária) dos multiplicadores define certos eixos de simetria transversal (longitudinal) em cada fior, que podem ser tomados como uma espécie de "sistema de coordenadas cartesiano". Em tal sistema, observamos um ordenamento simétrico dos números de rotação das fiores, de maneira similar ao ordenamento dos números racionais no círculo unitário. Mostrando desta forma que o interior de cada fior é isomorfo ao círculo unitário. A medida que nos aproximamos das zonas de transição isoperiódica (de órbitas complexas para reais), observamos uma rotação dos eixos transversais locais de cadafior em direção aos eixos longitudinais, até ambosficarem alinhados, no limite da acumulação. Esta mudança não ocorre nos círculos do conjunto de Mandelbrot, onde ambos eixos permanecem perpendiculares até alcançar um tamanho nulo no ponto raiz. Isto parece mostrar que, apesar dos conjuntos Mandelbrot e tipo-Mandelbrot compartilharem várias propriedades métricas, a ausência de conectividade local nestes últimos modifica significativamente sua estrutura interna. / In this work we study scaling proprerties of certain structures recently found in phase diagrams, called as Mandelbrot-like sets. Such structures (sets) are important becausethey appear repeatedly in dinamical systems, particularly, in differentials equations that describe lasers and others physical models. Df particular interest, are scalings of codimension-2, i.e., that depend on the simultaneous variation of two physical parameters to be observed. Through the obtention of exact expressions for the birth points of stability domains ("cactus flowers''), we proved analitically that the accumulation rate of the domains converges to a constant limit value equal to unity. Another convergence rates such as, for example, orientation of the domain axis with respect to the horizontal, the decrease of domains heights and areas, also converge to unity. We also founded this convergence in the Mandelbrot set. In both cases, the convergences obey a power law with integer exponents, in contrast with the typical Feigenbaum convergence, that also follows a power law but with fraccionary exponent. For the reasons discuted in detail along the work, we conjecture this unitary scaling to have a general caracter always that one have families of periodic fases participating in a process of accumulation with period adding. We observed that the rational numbers sets that label the infinity flower's families (periodic phases), in the Mandelbrot-like sets, also exhibit the same rate of convergence. This fact lead us to believe, from a theoretical point of view, that this scaling seems to arise from the metrical properties of rationals. Besides this, we complemented the study of scalings in the Mandelbrot-like sets with a detailed study of their internal structure, via multipliers of the stable periodic orbits, both real and complexo We observed that the real (imaginary) part of multipliers define certain transversal (longitudinal) axis of simetry en each flower, that can be take as a sort of local "cartesian coordinates system". In such system, we observe a symmetric ordering of the rotation numbers of flowers, like the ordering of rational numbers in the unitary circle. Showing of this form that the inner of each flower is isomorphic to the unitary circle. As we aproximate to the isoperiodic transition zones (of complexto realorbits),wefounded a rotationof the transversallocalaxis of each flower toward the longitudinal axis, until both axis stay aligned, at the accumulation limito This rotation does not occur inside the Mandelbrot set circles, where both axis remain perpendicular until they reach a null size at the root point. This seems to show that, in spite of Mandelbrot and Mandelbrot-like sets to share several metric properties, the lack of local conectivity in the latest modifies significantly their internal structure.
|
Page generated in 0.0356 seconds