• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 29
  • 2
  • 1
  • Tagged with
  • 96
  • 33
  • 25
  • 23
  • 16
  • 16
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Almost sure optimal stopping times : theory and applications.

Landon, Nicolas 04 February 2013 (has links) (PDF)
Résumé : Cette thèse comporte 8 chapitres. Le chapitre 1 est une introduction aux problématiques rencontrées sur les marchés énergétiques : fréquence d'intervention faible, coûts de transaction élevés, évaluation des options spread. Le chapitre 2 étudie la convergence de l'erreur de couverture d'une option call dans le modèle de Bachelier, pour des coûts de transaction proportionnels (modèle de Leland-Lott) et lorsque la fréquence d'intervention devient infinie. Il est prouvé que cette erreur est bornée par une variable aléatoire proportionnelle au taux de transaction. Cependant, les démonstrations de convergence en probabilité demandent des régularités sur les sensibilités assez restrictives en pratique. Les chapitres suivants contournent ces obstacles en étudiant des convergences presque sûres. Le chapitre 3 développe tout d'abord de nouveaux outils de convergence presque sûre. Ces résultats ont de nombreuses conséquences sur le contrôle presque sûr de martingales et de leur variation quadratique, ainsi que de leurs incréments entre deux temps d'arrêt généraux. Ces résultats de convergence trajectorielle sont connus pour être difficiles à obtenir sans information sur les lois. Par la suite, nous appliquons ces résultats à la minimisation presque sûre de la variation quadratique renormalisée de l'erreur de couverture d'une option de payoff général (cadre multidimensionnel, payoff asiatique, lookback) sur une large classe de temps d'intervention. Une borne inférieure à notre critère est trouvée et une suite minimisante de temps d'arrêt optimale est exhibée : il s'agit de temps d'atteinte d'ellipsoïde aléatoire, dépendant du gamma de l'option. Le chapitre 4 étudie la convergence de l'erreur de couverture d'une option de payoff convexe (dimension 1) en prenant en compte des coûts de transaction à la Leland-Lott. Nous décomposons l'erreur de couverture en une partie martingale et une partie négligeable, puis nous minimisons la variation quadratique de cette martingale sur une classe de temps d'atteintes générales pour des Deltas vérifiant une certaine EDP non-linéaire sur les dérivées secondes. Nous exhibons aussi une suite de temps d'arrêt atteignant cette borne. Des tests numériques illustrent notre approche par rapport à une série de stratégies connues de la littérature. Le chapitre 5 étend le chapitre 3 en considérant une fonctionnelle des variations discrètes d'ordre Y et de Z de deux processus d'Itô Y et Z à valeurs réelles, la minimisation étant sur une large classe de temps d'arrêt servant au calcul des variations discrètes. Borne inférieure et suite minimisant sont obtenues. Une étude numérique sur les coûts de transaction est faite. Le chapitre 6 étudie la discrétisation d'Euler d'un processus multidimensionnel X dirigé par une semi-martingale d'Itô Y . Nous minimisons sur les temps de la grille de discrétisation un critère quadratique sur l'erreur du schéma. Nous trouvons une borne inférieure et une grille optimale, ne dépendant que des données observables. Le chapitre 7 donne un théorème limite centrale pour des discrétisations d'intégrale stochastique sur des grilles de temps d'atteinte d'ellipsoïdes adaptées quelconque. La corrélation limite est conséquence d'asymptotiques fins sur les problèmes de Dirichlet. Dans le chapitre 8, nous nous intéressons aux formules d'expansion pour les options sur spread, pour des modèles à volatilité locale. La clé de l'approche consiste à conserver la propriété de martingale de la moyenne arithmétique et à exploiter la structure du payoff call. Les tests numériques montrent la pertinence de l'approche.
42

Nanophotonique : guidage d'ondes sur des surfaces structurées

Andrianandrasanirina Tinasoa, Faly 17 December 2010 (has links) (PDF)
Aujourd'hui le monde des télécommunications est en plein essor et le nombre de services proposés aux consommateurs augmente d'année en année. Les technologies employées font appel à l'optique. Le simple constat du nombre d'applications "sans fils" qui se développent permet de se rendre compte de l'importance des microondes dans l'ensemble des technologies modernes de communication. Cette thèse se situe dans ce cadre. Elle présente des techniques de modélisation de base pour concevoir et optimiser un guide d'onde de surface fonctionnant dans le domaine des microondes. Dans le premier chapitre, des outils de simulation permettant de calculer la réponse de diffraction par les réseaux de strips métalliques ont été développés. Les méthodes rigoureuses qui ont été retenues sont la méthode MMFE, CBCM et la méthode C qui prennent en compte la nature vectorielle de la lumière. La difficulté de convergence des calculs numériques et le problème de discontinuité des champs sur les strips métalliques est mise en évidence. Pour traiter ces problèmes, un changement de coordonnées est proposé, c'est le système de " Coordonnées adaptative " qui permet de resserrer les lignes de coordonnées au voisinage des points des discontinuités. Il en résulte une diminution du saut de discontinuité en ces points et une amélioration de la convergence des calculs numériques. Dans le second chapitre, ces méthodes sont étendues au problème de la diffraction en incidence oblique encore appelé diffraction conique. Dans le troisième chapitre, nous avons appliqué ces méthodes pour étudier et caractériser les réseaux de strips métalliques déposés sur une couche diélectrique. Nous avons mis en évidence le phénomène de résonance sur les facteurs de réflexion et nous avons pu montré que ces effets des résonances sont dus au couplage de l'onde de surface et de l'onde plane incidente. Afin d'analyser les couplages résultants qui existent entre le mode, nous avons étudié les pôles de la matrice S et déterminé la sensibilité et l'influence des paramètres optoélectroniques sur le pic de résonance. Cette étude a permis de déterminer le triplet (hauteur, facteur de forme, l'angle de polarisation ) relatif à la structure pour que le guide soit optimisé.
43

Développement d'un outil de pré dimensionnement de structures sandwich soumises à des impacts à vitesse intermédiaire

Mavel, Sébastien 04 October 2012 (has links) (PDF)
Dans le cadre du développement d'un outil semi-analytique de pré-dimensionnement de structures sandwich soumises à des impacts à vitesse intermédiaire (<20m.s-1), nous proposons la détermination d'une solution efficace, basée sur les séries de Fourier avec des conditions aux limites générales. Les équations gouvernantes qui permettent de décrire la réponse transitoire élastique de plaques stratifiées orthotropes avec prise en compte d'une loi non linéaire de contact hertzien sont développées en utilisant un schéma de discrétisation temporelle explicite. Pour les conditions aux limites générales, la solution en séries de Fourier est complétée par une série mixte de polynômes-cosinus, qui permet d'aboutir à la solution, tout en permettant à la série de satisfaire les équations d'équilibres ainsi que les conditions limites, de façon exacte en augmentant le nombre de termes de la série. Afin de tenir compte des phénomènes physiques locaux lors de l'impact de structure sandwich, la plasticité et la rupture locale de la plaque anti-perforation sont introduites dans une formulation modifiée du contact de Hertz et l'écrasement de l'âme du sandwich est ajouté dans l'équation d'équilibre du projectile. Les solutions obtenues par cette méthode sont en accord avec les résultats par modélisation éléments finis de plaques composites multicouches impactées par un projectile. Une campagne expérimentale d'impact de type " box corner " sur des plaques sandwich de 1m², a servi de référence expérimentale et permis la validation de ce modèle complet. Finalement, le couplage de ce modèle à un optimiseur basé sur les techniques de plans d'expériences et de surfaces de réponses (métamodèles), nous a permis de choisir la meilleure structure d'absorption d'énergie (matériaux et géométrie) pour des structures plaques soumises à des impacts de 7kJ. Un test sur un véhicule réel avec la configuration structurelle choisie, nous a permis de valider l'outil final de pré-dimensionnement et de confirmer la qualité des résultats numériques obtenus par ce modèle semi-analytique.
44

Problèmes de discrétisation et de filtrage pour la visualisation d'images numériques

Ghazanfarpour-Kholendjany, Djamchid 30 May 1990 (has links) (PDF)
LA FAIBLE DEFINITION DES MEMOIRES DE TRAMES IMPOSEE PAR DES CONTRAINTES TECHNOLOGIQUES POSE DES PROBLEMES DE DISCRETISATION DE L'IMAGE LORS DE SON AFFICHAGE. IL EN RESULTE LES DIFFERENTS DEFAUTS D'ALIASSAGE DUS A UN ECHANTILLONNAGE INSUFFISANT DE L'IMAGE SOUS SA FORME ANALOGIQUE. CES DEFAUTS SONT PERCEPTIBLES ESSENTIELLEMENT SOUS FORMES DE MARCHES D'ESCALIER SUR LES CONTOURS DE L'IMAGE, D'APPARITION ET DE DISPARITION DES PETITS OBJETS SUIVANT LEUR POSITION DANS LA SCENE ET DE PRESENCE DE MOIRE DANS LES SCENES PORTANT DES TEXTURES. POUR ATTEINDRE UN PLUS GRAND DEGRE DE REALISME EN SYNTHESE D'IMAGES, IL EST INDISPENSABLE DE RESOUDRE CES PROBLEMES DE DISCRETISATION. LA SOLUTION GENERALE EST UN PREFILTRAGE PASSE-BAS DE L'IMAGE AVANT SON AFFICHAGE. NOUS ABORDONS CES PROBLEMES SOUS UN ANGLE THEORIQUE ET PRATIQUE DANS CETTE THESE. NOUS ETUDIONS LES METHODES D'ANTIALIASSAGE EN SYNTHESE D'IMAGES DANS LES CAS LES PLUS COURANTS. NOUS PROPOSONS DES NOUVELLES METHODES EN PARTICULIER DES ALGORITHMES ORIGINAUX POUR RESOUDRE CES PROBLEMES DANS LES CAS DU TAMPON DE PROFONDEUR ET DES TEXTURES
45

Pour un système de synthèse d'images flexible et évolutif : quelques propositions

Jahami, Ghassan 21 March 1991 (has links) (PDF)
Je me suis intéressé pendant ma thèse à la globalité du système de synthèse d'images. En effet, j'ai travaillé sur les différentes étapes du processus de la génération d'une image de synthèse: de la modélisation jusqu'au rendu. Mon objectif principal était de favoriser l'évolutivité et la flexibilité du système. Pour pouvoir atteindre cet objectif, j'ai utilisé la programmation orientée objet pour concevoir et implanter un modeleur de type arbre de construction en langage c++. J'ai proposé une méthodologie de choix de classes et une hiérarchie originale de classes. Pour rendre le système plus flexible, j'ai permis le mixage d'algorithmes d'élimination des parties cachées dans une même scène tout en assurant l'interaction en termes de réflexion, transparence et ombres portées entre tous les objets de la scène. Enfin, j'ai proposé un certain nombre d'outils et méthodes pour la gestion des niveaux de détails dans une scène.
46

Discrétisation en maillage non structuré général et applications LES

Haider, Florian 29 May 2009 (has links) (PDF)
L'objectif est d'améliorer la stabilité et la précision de la discrétisation spatiale de type volumes finis sur des maillages non structurés. La thèse fournit une analyse générale de la reconstruction des polynômes de degré k en maillage non structuré et présente plusieurs algorithmes permettant de reconstruire des polynômes sur de petits voisinages compacts. Une étude théorique de la stabilité établit des principes pour concevoir des méthodes de reconstruction stables. Une étude théorique de la précision caractérise les erreurs induites par le maillage non structuré à l'aide de l'approche de l'équation modifiée. L'étude formule également des algorithmes de limitation en maillage non structuré basés sur une approche géométrique. Toutes les études théoriques sont complétées par des expériences numériques. Les calculs LES d'un écoulement subsonique au-dessus d'une cavité et d'un jet supersonique permettent de valider et comparer plusieurs options de discrétisation spatiale.
47

Analyse de modèles en mécanique des fluides compressibles

Fettah, Amal 18 December 2012 (has links)
Dans cette thèse on s'est intéressé à l'étude de problèmes concernant la théorie des écoulements compressibles. Dans une première partie on a traité le problème de transport instationnaire avec un champ de vitesse peu régulier, on a établi un résultat d'existence en passant à la limite sur des schémas numériques volumes finis avec un choix décentré amont qui garantie la positivité de la masse volumique. Pour le problème de Stokes, le résultat est démontré par deux approches : une approche par schéma numérique et une approche par régularité visqueuse.Dans la première méthode on propose une discrétisation qui combine la méthode des éléments finis et la méthode des volumes finis qui repose sur les espaces Crouzeix-Raviart. Une première difficulté de ce travail est de démontrer les estimations sur la solution discrète, en particulier à cause de la présence de la gravité dans le terme source de l'équation de quantité de mouvement. Le fait de considérer une loi d'état très générale conduit des difficultés supplémentaires en particulier dans le passage à la limite sur cette équation.Dans la deuxième méthode, le résultat d'existence est démontré en utilisant une approximation par viscosité. Ceci consiste essentiellement en deux parties : l'étude du problème de convection diffusion (qui apparait dans le problème régularisé) où on démontre l'existence et l'unicité de solution et en deuxième partie le passage à la limite sur le problème régularisé. / This thesis is concerned with the study of problems relating in the theory of compressible flows . We prove the existence of the considered problems in a first part by passing to the limit on the numerical schemes proposed for the discretisation of these problems. In the second part, the existence result is obtained by passing to the limit on the approximate solutions given by a corresponding regularized problem.The main result is to prove the existence of a solution of the stationnary compressible Stokes problem with a general equation of state.We first prove this result by passing to the limit on the numerical scheme as the mesh size tends to zero. The fact to consider a general E.O.S induces some additional difficulties in particular to get estimates on the discrete solution (which comes also from the presence of the gravity in the momentum equation) and in the passage to the limit on the E.O.S.We also prove the existence result by passing to the limit on a regularized problem. We first treat the convection-diffusion problem (which appears in the regularized problem), we give an existence and uniqueness result, and we then prove estimates on the approwimate solutions and pass to the limit on the regularized problem.
48

Méthodes de Galerkin stochastiques adaptatives pour la propagation d'incertitudes paramétriques dans les modèles hyperboliques / Adaptive stochastic Galerkin methods for parametric uncertainty propagation in hyperbolic systems

Tryoen, Julie 21 November 2011 (has links)
On considère des méthodes de Galerkin stochastiques pour des systèmes hyperboliques faisant intervenir des données en entrée incertaines de lois de distribution connues paramétrées par des variables aléatoires. On s'intéresse à des problèmes où un choc apparaît presque sûrement en temps fini. Dans ce cas, la solution peut développer des discontinuités dans les domaines spatial et stochastique. On utilise un schéma de Volumes Finis pour la discrétisation spatiale et une projection de Galerkin basée sur une approximation polynomiale par morceaux pour la discrétisation stochastique. On propose un solveur de type Roe avec correcteur entropique pour le système de Galerkin, utilisant une technique originale pour approcher la valeur absolue de la matrice de Roe et une adaptation du correcteur entropique de Dubois et Mehlmann. La méthode proposée reste coûteuse car une discrétisation stochastique très fine est nécessaire pour représenter la solution au voisinage des discontinuités. Il est donc nécessaire de faire appel à des stratégies adaptatives. Comme les discontinuités sont localisées en espace et évoluent en temps, on propose des représentations stochastiques dépendant de l'espace et du temps. On formule cette méthodologie dans un contexte multi-résolution basé sur le concept d'arbres binaires pour décrire la discrétisation stochastique. Les étapes d'enrichissement et d'élagage adaptatifs sont réalisées en utilisant des critères d'analyse multi-résolution. Dans le cas multidimensionnel, une anisotropie de la procédure adaptative est proposée. La méthodologie est évaluée sur le système des équations d'Euler dans un tube à choc et sur l'équation de Burgers en une et deux dimensions stochastiques / This work is concerned with stochastic Galerkin methods for hyperbolic systems involving uncertain data with known distribution functions parametrized by random variables. We are interested in problems where a shock appears almost surely in finite time. In this case, the solution exhibits discontinuities in the spatial and in the stochastic domains. A Finite Volume scheme is used for the spatial discretization and a Galerkin projection based on piecewise poynomial approximation is used for the stochastic discretization. A Roe-type solver with an entropy correction is proposed for the Galerkin system, using an original technique to approximate the absolute value of the Roe matrix and an adaptation of the Dubois and Mehlman entropy corrector. Although this method deals with complex situations, it remains costly because a very fine stochastic discretization is needed to represent the solution in the vicinity of discontinuities. This fact calls for adaptive strategies. As discontinuities are localized in space and time, stochastic representations depending on space and time are proposed. This methodology is formulated in a multiresolution context based on the concept of binary trees for the stochastic discretization. The adaptive enrichment and coarsening steps are based on multiresolution analysis criteria. In the multidimensional case, an anisotropy of the adaptive procedure is proposed. The method is tested on the Euler equations in a shock tube and on the Burgers equation in one and two stochastic dimensions
49

Étude et modélisation des équations différentielles stochastiques / High weak order discretization schemes for stochastic differential equation

Rey, Clément 04 December 2015 (has links)
Durant les dernières décennies, l'essor des moyens technologiques et particulièrement informatiques a permis l'émergence de la mise en œuvre de méthodes numériques pour l'approximation d'Equations Différentielles Stochastiques (EDS) ainsi que pour l'estimation de leurs paramètres. Cette thèse aborde ces deux aspects et s'intéresse plus spécifiquement à l'efficacité de ces méthodes. La première partie sera consacrée à l'approximation d'EDS par schéma numérique tandis que la deuxième partie traite l'estimation de paramètres. Dans un premier temps, nous étudions des schémas d'approximation pour les EDSs. On suppose que ces schémas sont définis sur une grille de temps de taille $n$. On dira que le schéma $X^n$ converge faiblement vers la diffusion $X$ avec ordre $h in mathbb{N}$ si pour tout $T>0$, $vert mathbb{E}[f(X_T)-f(X_T^n)] vertleqslant C_f /n^h$. Jusqu'à maintenant, sauf dans certains cas particulier (schémas d'Euler et de Ninomiya Victoir), les recherches sur le sujet imposent que $C_f$ dépende de la norme infini de $f$ mais aussi de ses dérivées. En d'autres termes $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Notre objectif est de montrer que si le schéma converge faiblement avec ordre $h$ pour un tel $C_f$, alors, sous des hypothèses de non dégénérescence et de régularité des coefficients, on peut obtenir le même résultat avec $C_f=C Vert f Vert_{infty}$. Ainsi, on prouve qu'il est possible d'estimer $mathbb{E}[f(X_T)]$ pour $f$ mesurable et bornée. On dit alors que le schéma converge en variation totale vers la diffusion avec ordre $h$. On prouve aussi qu'il est possible d'approximer la densité de $X_T$ et ses dérivées par celle $X_T^n$. Afin d'obtenir ce résultat, nous emploierons une méthode de calcul de Malliavin adaptatif basée sur les variables aléatoires utilisées dans le schéma. L'intérêt de notre approche repose sur le fait que l'on ne traite pas le cas d'un schéma particulier. Ainsi notre résultat s'applique aussi bien aux schémas d'Euler ($h=1$) que de Ninomiya Victoir ($h=2$) mais aussi à un ensemble générique de schémas. De plus les variables aléatoires utilisées dans le schéma n'ont pas de lois de probabilité imposées mais appartiennent à un ensemble de lois ce qui conduit à considérer notre résultat comme un principe d'invariance. On illustrera également ce résultat dans le cas d'un schéma d'ordre 3 pour les EDSs unidimensionnelles. La deuxième partie de cette thèse traite le sujet de l'estimation des paramètres d'une EDS. Ici, on va se placer dans le cas particulier de l'Estimateur du Maximum de Vraisemblance (EMV) des paramètres qui apparaissent dans le modèle matriciel de Wishart. Ce processus est la version multi-dimensionnelle du processus de Cox Ingersoll Ross (CIR) et a pour particularité la présence de la fonction racine carrée dans le coefficient de diffusion. Ainsi ce modèle permet de généraliser le modèle d'Heston au cas d'une covariance locale. Dans cette thèse nous construisons l'EMV des paramètres du Wishart. On donne également la vitesse de convergence et la loi limite pour le cas ergodique ainsi que pour certains cas non ergodiques. Afin de prouver ces convergences, nous emploierons diverses méthodes, en l'occurrence : les théorèmes ergodiques, des méthodes de changement de temps, ou l'étude de la transformée de Laplace jointe du Wishart et de sa moyenne. De plus, dans dernière cette étude, on étend le domaine de définition de cette transformée jointe / The development of technology and computer science in the last decades, has led the emergence of numerical methods for the approximation of Stochastic Differential Equations (SDE) and for the estimation of their parameters. This thesis treats both of these two aspects. In particular, we study the effectiveness of those methods. The first part will be devoted to SDE's approximation by numerical schemes while the second part will deal with the estimation of the parameters of the Wishart process. First, we focus on approximation schemes for SDE's. We will treat schemes which are defined on a time grid with size $n$. We say that the scheme $ X^n $ converges weakly to the diffusion $ X $, with order $ h in mathbb{N} $, if for every $ T> 0 $, $ vert mathbb{E} [f (X_T) -f (X_T^n)]vert leqslant C_f / h^n $. Until now, except in some particular cases (Euler and Victoir Ninomiya schemes), researches on this topic require that $ C_f$ depends on the supremum norm of $ f $ as well as its derivatives. In other words $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Our goal is to show that, if the scheme converges weakly with order $ h $ for such $C_f$, then, under non degeneracy and regularity assumptions, we can obtain the same result with $ C_f=C Vert f Vert_{infty}$. We are thus able to estimate $mathbb{E} [f (X_T)]$ for a bounded and measurable function $f$. We will say that the scheme converges for the total variation distance, with rate $h$. We will also prove that the density of $X^n_T$ and its derivatives converge toward the ones of $X_T$. The proof of those results relies on a variant of the Malliavin calculus based on the noise of the random variable involved in the scheme. The great benefit of our approach is that it does not treat the case of a particular scheme and it can be used for many schemes. For instance, our result applies to both Euler $(h = 1)$ and Ninomiya Victoir $(h = 2)$ schemes. Furthermore, the random variables used in this set of schemes do not have a particular distribution law but belong to a set of laws. This leads to consider our result as an invariance principle as well. Finally, we will also illustrate this result for a third weak order scheme for one dimensional SDE's. The second part of this thesis deals with the topic of SDE's parameter estimation. More particularly, we will study the Maximum Likelihood Estimator (MLE) of the parameters that appear in the matrix model of Wishart. This process is the multi-dimensional version of the Cox Ingersoll Ross (CIR) process. Its specificity relies on the square root term which appears in the diffusion coefficient. Using those processes, it is possible to generalize the Heston model for the case of a local covariance. This thesis provides the calculation of the EMV of the parameters of the Wishart process. It also gives the speed of convergence and the limit laws for the ergodic cases and for some non-ergodic case. In order to obtain those results, we will use various methods, namely: the ergodic theorems, time change methods or the study of the joint Laplace transform of the Wishart process together with its average process. Moreover, in this latter study, we extend the domain of definition of this joint Laplace transform
50

Spectral approximation with matrices issued from discretized operators / Approximation spectrale de matrices issues d’opérateurs discrétisés

Silva Nunes, Ana Luisa 11 May 2012 (has links)
Cette thèse considère la solution numérique d'un problème aux valeurs propres de grandes dimensions, dans lequel l'opérateur est dérivé d'un problème de transfert radiatif. Ainsi, cette thèse étudie l'utilisation de matrices hiérarchiques, une représentation efficace de tableaux, très intéressante pour une utilisation avec des problèmes de grandes dimensions. Les matrices sont des représentations hiérarchiques de structures de données efficaces pour les matrices denses, l'idée de base étant la division d'une matrice en une hiérarchie de blocs et l´approximation de certains blocs par une matrice de petite caractéristique. Son utilisation permet de diminuer la mémoire nécessaire tout en réduisant les coûts informatiques. L'application de l'utilisation de matrices hiérarchique est analysée dans le contexte de la solution numérique d'un problème aux valeurs propres de grandes dimensions résultant de la discrétisation d'un opérateur intégral. L'opérateur est de convolution et est défini par la première fonction exponentielle intégrale, donc faiblement singulière. Pour le calcul informatique, nous avons accès à HLIB (Hierarchical matrices LIBrary) qui fournit des routines pour la construction de la structure hiérarchique des matrices et des algorithmes pour les opérations approximative avec ces matrices. Nous incorporons certaines routines comme la multiplication matrice-vecteur ou la decomposition LU, en SLEPc (Hierarchical matrices LIBrary) pour explorer les algorithmes existants afin de résoudre les problèmes de valeur propre. Nous développons aussi des expressions analytiques pour l'approximation des noyaux dégénérés utilisés dans la thèse et déduire ainsi les limites supérieures d'erreur pour ces approximations. Les résultats numériques obtenus avec d'autres techniques pour résoudre le problème en question sont utilisés pour la comparaison avec ceux obtenus avec la nouvelle technique, illustrant l'efficacité de ce dernier / In this thesis, we consider the numerical solution of a large eigenvalue problem in which the integral operator comes from a radiative transfer problem. It is considered the use of hierarchical matrices, an efficient data-sparse representation of matrices, especially useful for large dimensional problems. It consists on low-rank subblocks leading to low memory requirements as well as cheap computational costs. We discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and hence it is weakly singular. We access HLIB (Hierarchical matrices LIBrary) that provides, among others, routines for the construction of hierarchical matrix structures and arithmetic algorithms to perform approximative matrix operations. Moreover, it is incorporated the matrix-vector multiply routines from HLIB, as well as LU factorization for preconditioning, into SLEPc (Scalable Library for Eigenvalue Problem Computations) in order to exploit the available algorithms to solve eigenvalue problems. It is also developed analytical expressions for the approximate degenerate kernels and deducted error upper bounds for these approximations. The numerical results obtained with other approaches to solve the problem are used to compare with the ones obtained with this technique, illustrating the efficiency of the techniques developed and implemented in this work

Page generated in 0.11 seconds