Spelling suggestions: "subject:"disordered protein"" "subject:"misordered protein""
1 |
Molecular Bases of Salinity Resistance via Intrinsic Disordered Protein (IDP)Yuan, Xukun 05 1900 (has links)
Salt-affected soil is a prominent challenge in agriculture. Nowadays, more than 800 million hectares of land (about 6% of the world’s total land area) are induced with high salt concentrations, and thus, are unsuitable for growing typically salt-sensitive crop plants. The ongoing salinization of arable land exacerbates this limitation. To address this issue, the development of salinity-tolerant crop plants has gained considerable interest, with a protein identified by Prof. Mark Tester's group, named "SALTY2," offering promising potential.
SALTY2 is overexpressed in response to NaCl treatment on Salicornia plants conferring salinity tolerance, and following the function of the SALTY2 protein from Salicornia and analogous proteins in Arabidopsis, yeast and in vitro, a universal mechanism in evolution is suggested. During my thesis, we analyzed the biophysical properties of SALTY2, and based on spectroscopic methods we confirmed it is an intrinsic disordered protein (IDP), which is consistent with previous studies claiming that IDPs play a vital role in stress response pathways. We have identified and characterized the loss-of-function "RG/RGG" to "KG/KGG" type mutation and a deltaSTM1 N-terminal mutation, and investigated the interaction of SALTY2 and other cellular components, including short fragment RNA, and 80S ribosome. Together with state-of-the-art high-resolution NMR and Cryo-EM methods we validated the direct interaction of SALTY2 with plant ribosomes, and 25nts random RNA, and determined the 3D structure of ribosome with the potential binding site of the SALTY2 protein. Combining biophysical, structural and functional analyses of the wild-type and loss-of-function mutants of SALTY2, we proposed a potential mechanism by which the IDP protein SALTY2 confers salinity tolerance in plants. These findings offer a deeper understanding of the molecular basis of salinity tolerance in plants via IDPs and contribute to the ongoing efforts to develop salinity-tolerant crop plants.
|
2 |
Mass spectrometry methods for characterising the dynamic behaviour of proteins and protein complexesBeveridge, Rebecca January 2016 (has links)
Research into the relationship between the structure and function of proteins has been ongoing now for several decades. More recently, there has been an explosion in the investigation of the dynamic properties of proteins, and how their dynamic propensity relates to their function. This new direction in protein research requires new techniques to analyse protein dynamics, since most traditional techniques are biased towards a fixed tertiary structure. Mass spectrometry (MS) is emerging as a powerful tool to probe protein dynamics since it can provide information on interconverting conformations and has no preference towards the folded state. Furthermore, its low sample consumption, rapid data acquisition and low data processing positions MS as an attractive tool in protein structure research. The hybrid technique of ion mobility-mass spectrometry provides further insight into the range of conformations adopted by proteins and protein complexes, by providing information on the size in terms of rotationally averaged collision cross section. The work presented in this thesis considers proteins with a range of structural characteristics. We use ion mobility mass spectrometry to investigate proteins of different extents of disorder, protein complexes with dynamic entities and a system that undergoes structural rearrangement upon ligand binding. First, a framework of mass spectrometry experiments is described which allows identification of the extent of structure and disorder within proteins. This framework is tested on a range of different systems throughout the thesis. Differences in the gas-phase properties of two conformationally dynamic proteins which behave similarly in solution are investigated and from this research we postulate a new ionisation mechanism for partially folded proteins. The dynamic propensity of C-terminal p27 is investigated and compared to two permutants which allows us to delineate how the location of charged residues in a primary sequence affects the structure of a protein. We monitor the 'folding-upon-binding' behaviour of p27 upon association with its binding partners, and how this differs with the order of charged residues in the linear sequence. Finally, we describe the structural rearrangement of Fdc1 upon the binding of its cofactor; a prenylated FMN molecule. This thesis demonstrates the suitability of ion mobility-mass spectrometry for the investigation of dynamic properties of proteins and protein complexes.
|
3 |
THE DISORDERED REGULATION OF CALCINEURIN: HOW CALMODULIN-INDUCED REGULATORY DOMAIN STRUCTURAL CHANGES LEAD TO THE ACTIVATION OF CALCINEURINDunlap, Victoria B 01 January 2013 (has links)
Calcineurin (CaN) is a highly regulated Ser/Thr protein phosphatase that plays critical roles in learning and memory, cardiac development and function, and immune system activation. Alterations in CaN regulation contribute to multiple disease states such as Down syndrome, cardiac hypertrophy, Alzheimer’s disease, and autoimmune disease. In addition, CaN is the target of the immunosuppressant drugs FK506 and cyclosporin A. Despite its importance, CaN regulation is not well understood on a molecular level. Full CaN activation requires binding of calcium-loaded calmodulin (CaM), however little is known about how CaM binding releases CaN’s autoinhibitory domain from the active site. Previous work has demonstrated that the regulatory domain of CaN (RD) is disordered. The binding of CaM to CaN results in RD folding. Folding of the RD in turn causes the autoinhibitory domain (AID) located C-terminal to the RD to be ejected from CaN’s active site. This binding-induced disorder-to-order transition is responsible for the activation of CaN by CaM. In this work, we explore the nature of the disorder in the RD and its transition to an ordered state, demonstrating that the RD exists in a compact disordered state that undergoes further compaction upon CaM binding. We also demonstrate that a single CaM molecule is responsible for binding to and activating CaN. Finally, we determine that the CaM binding to CaN induces an amphipathic helix (the distal helix) C-terminal to the CaM binding region. The distal helix undergoes a hairpin-like chain reversal in order to interact with the surface of CaM, resulting in the removal of the AID from CaN’s active site. We employ site-directed mutagenesis, size-exclusion chromatography, protein crystallography, circular dichroism spectroscopy, fluorescence anisotropy and correlation spectroscopy, and phosphatase activity assays to investigate the ordering of CaN’s regulatory domain, the stoichiometry of CaN:CaM binding, and the impact of the distal helix on CaM activation of CaN.
|
4 |
Characterization and Engineering of Protein-Protein Interactions Involving PDZ DomainsKarlsson, Andreas January 2017 (has links)
The work presented in this thesis has contributed with knowledge to several aspects of protein-protein interaction involving PDZ domains. A substantial amount of our proteome contains regions that are intrinsically disordered but fold upon ligand interaction. The mechanism by which disordered regions bind to their ligands is one important piece of the puzzle to understand why disorder is beneficial. A region in the PDZ domain of nNOS undergoes such a disorder-to-order transition to form a b-sheet in the binding pocket of its partner. By studying the kinetics of interaction, in combination with mutations that modulate the stability of the aforementioned region, we demonstrate that the binding mechanism consists of multiple steps in which the native binding interactions of the b-sheet are formed cooperatively after the rate-limiting transition state. These mechanistic aspects may be general for the binding reactions of intrinsically disordered protein regions, at least upon formation of β-sheets. The second part of this thesis deals with the engineering of proteins for increasing affinity in protein-protein interaction. Infection by high-risk human papillomavirus (hrHPV) can lead to cancer, and the viral E6 protein is an attractive drug target. E6 from hrHPV natively interacts with the well-characterized PDZ2 domain in SAP97, which we used as a scaffold to develop a high affinity bivalent binder of hrHPV E6. We initially increased PDZ2's affinity for E6 6-fold, but at the cost of decreased specificity. Attaching a helix that binds E6 at a distant site, increasing the affinity another14-fold, completed the design. The final work of this thesis investigates if binding studies conducted with isolated PDZ domains is representative of the full-length proteins they belong to. It has been suggested that ligand binding in PDZ domains can be influenced by factors such as adjacent domains and interactions outside of the binding pocket. We studied these aspects for the three PDZ domains of PSD-95 and found that they on the whole function in an independent manner with short peptides as ligands, but that interactions outside of the PDZ binding-pocket may be present. The representative length of the PDZ interaction partner should therefore be considered.
|
5 |
Study Conformational Dynamics of Intrinsically Disordered Proteins by Single‐Molecule SpectroscopyZhou, Man 01 July 2016 (has links)
No description available.
|
6 |
NMR approaches to understanding intramolecular and intermolecular interactions in proteinsPanova, Stanislava January 2017 (has links)
Inhibition of the intrinsically disordered proteins (IDP) is a recognized issue in drug research. Standard approaches, based on key-lock model, cannot be used in the absence of rigid structure and defined active site. Here a basic helix-loop-helix leucine zipper (bHLHZip) domain of c-Myc was studied, which is intrinsically disordered and prone to aggregation. Chemical denaturation of proteins is a widely accepted technique to study protein folding, but here this methodology was applied to IDP, observing its effect on the structural ensemble of c-Myc by NMR spectroscopy. Nonlinear chemical shift changes indicated cooperative unfolding of the helical structure of the part of the leucine zipper domain in parallel with the melting of the N-terminal helix. Paramagnetic relaxation enhancement (PRE) was used to probe long-range structure and revealed presence of long-range contacts. The following search for inhibitors can be directed to the search for ligands, locking c-Myc in its more compact conformation. Protein self-association is a problem typical for IDPs and intrinsic process for all proteins at high concentrations. It leads to increased viscosity, gelation and possible precipitation, which cause problems in protein manufacturing, stability and delivery. If protein drugs require high dosing, special approaches are needed. At high concentrations proteins experience conditions close to the crystal state, therefore interactions in solution could potentially coincide with crystal lattice contacts. A range of diverse methods is used to study this process, but the complexity of the mechanism makes it hard to build a reliable model. Here, the self-association of streptococcal Protein G (PrtG) was studied using Nuclear Magnetic Resonance (NMR) spectroscopy in solution. The properties of protein-protein interactions at high concentration, up to ~ 160 mg/ml, were studied at residue-level resolution. Residue specific information on protein dynamics was obtained using 15N relaxation measurements. The experiments were carried out at multiple concentrations. Variation in the rotational correlation time over these concentrations showed changes in the protein dynamics, which indicated weak protein-protein interactions occurring in solution. Pulsed-field gradient NMR spectroscopy was used to monitor translational diffusion coefficients in order to estimate the degree of protein self-association. Oligomer formation was also monitored by looking at variations in 1H and 15N amide chemical shifts. Better understanding of protein self-association mechanisms under different conditions could assist in developing methods to reduce the level of reversible protein self-association in solution at high protein concentrations.
|
7 |
História evolutiva da subfamília FOXP : análise evolutiva molecular e estrutural em tetrápodesViscardi, Lucas Henriques January 2015 (has links)
A família gênica Forkhead P {FOXP) tem sido alvo de muitos estudos envolvendo evolução do cérebro e comportamento animal. Destacam-se particularmente as investigações com o gene FOXP2, que indicam que mudanças neste gene estariam associadas com a evolução da vocalização em algumas espécies de mamíferos, incluindo o Homo sapiens. Recentemente, estudos de desordem intrínseca de proteínas (IDPs) tem ganhado ênfase no contexto evolut ivo, visto que uma correlação posit iva entre regiões de desordem e altas taxas evolutivas tem sido observada. Através de um conjunto de abordagens que inclui predizer o conteúdo de desordem e os motivos lineares de interação, bem como as taxas evolutivas, buscamos desvendar a historia evolutiva dos genes da subfamília FOXP. Concentramos nossas análises sobre regiões desordenadas das proteínas FOXPl, FOXP2, FOXP3 e FOXP4 encontradas em 77 espécies de tetrápodes. Tais regiões proteicas são normalmente negligenciadas em estudos dessa natureza, pois se localizam fora de seus tra dicionais domínios conservados, normalmente associados à função principal da proteína. Sít ios apontados estando sob seleção positiva e relaxamento da restrição seletiva mostraram-se hotspots importantes para mudanças que podem impactar na capacidade de interação das proteínas. Encontramos que os maiores valores de w são mais prevalentes em regiões desordenadas que em ordenadas. Ainda, alto e similar valor de desordem (70%) foi encontrado nas 77 proteínas ortólogas de FOXPl , FOXP2, e FOXP4, indicando a manutenção de um "padrão geral" sobre um longo tempo evolutivo. Portanto, a variabilidade tanto de aminoácidos quanto de motivos lineares dentro das regiões de desordem foi marcante. A proteína FOXP3 apresentou menor nível de desordem (30%), mas signif icante sinal de seleção positiva em alguns sítios. Composição idênt ica de resíduo de aminoácido e/ou motivos lineares em espécies filogeneticamente distantes, indica clara convergência molecular, provavelmente associada a pressões seletivas similares. Sucessivamente, nossos achados mostraram uma clara diferença na composição de motivos lineares entre mamíferos e não mamíferos, dando suporte para a importância dos estudos de evolução da interatividade proteica para as compreensões de características taxa-específicas. / Forkhead Family P (FOXP) has been target of many studies about brain and behavior evo lution among species. FOXP2 receives special attention in academic society, due associations with vocalízation evolution in mammals, including Homo sapiens. Recently, intrinsically disorder proteins studies have gained emphasis in the evolutionary context, as positive correlation between disorder regions and higher evolutionary rate has been observed. Through a set of approaches, including disorder and linear motif predictions, as well as estimate evolutionary rates, we aimed to unveil the evolutionary history of FOXP subfamily genes. We focused our ana lysis over disordered regions of FOXPl, FOXP2, FOXP3 and FOXP4 proteins retrieved in 77 tetrapods. Such protein regions are usually neglected in studies of this nature, for being localized out of the traditional conserved domains, usua lly associated with the main function of the protein. Sites indicated as under relaxation of selective constrains or positive selection have shown to be important hotspots for changes that can impact in protein interaction capability. Higher w va lues are prevalent in disordered regions than in ordered ones. Still, high and similar disorder proportion (~70%) was found among 77 orthologues proteins of FOXPl, FOXP2 and FOXP4, indicating general pattern of disorder maintenance, along tetrapod's evolutionary tree. However, amino acid and linear motifs variability within disordered regions was observed. FOXP3 protein presented lower disorder leveis (~30%), when compared with other paralogues, but signal of positive selection was observed in some sites. ldentical composition of amino acid residues and/or linear motifs is, probably, associated with similar selective pressure. Successively, ou r results showed clear differences in linear motif composition between mammals and non-mammals, supporting the importance of evolutionary studies on protein interaction for the understanding of taxa-specifics characteristics.
|
8 |
Investigations of Myelin Basic Protein, SH3 Proteins and the Oligodendrocyte Cytoskeleton during Maturation and DevelopmentSmith, Graham 29 August 2012 (has links)
The myelin basic protein (MBP) family arises from different transcription start sites of the Golli (gene of oligodendrocyte lineage) gene, with further variety generated by differential splicing. The “classic” MBP isoforms are peripheral membrane proteins that facilitate compaction of the mature myelin sheath, but also have multiple protein interactions. As an intrinsically disordered protein, MBP has proven to have complex structural and functional relationships with proteins in vitro including actin, tubulin, Ca2+-calmodulin, and multiple protein kinases. The investigations reported in this thesis were to further examine the multifunctionality, and protein:protein interactions of MBP with cytoskeletal and SRC homology 3 domain (SH3) proteins in cells using an oligodendrocyte (OLG) model system to better understand MBP’s contributions to membrane structure, formation, and elaboration in the developing OLG. A new function of MBP has been described showing that classic MBPs can modulate voltage operated calcium channels (VOCCs) by direct or indirect protein-protein interactions at the OLG cytoplasmic leaflet. These interactions contribute to global calcium homeostasis, and may play a complex developmental and spatiotemporal role in the regulation of oligodendrocyte precursor cell (OPC) migration and OLG differentiation. The importance of MBPs SH3 ligand binding domain within its central amino acid region was investigated with the protein-tyrosine kinase Fyn. Co-expression of MBP with a constitutively-active form of Fyn in OLGs resulted in membrane process elaboration, a phenomenon that was abolished by amino acid substitutions within MBP’s SH3-ligand domain. These results suggest that MBP’s SH3-ligand domain plays a key role, and may be required for proper membrane elaboration of developing OLGs. Lastly, interactions of MBP with the OLG cytoskeleton were investigated in OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). MBP redistributes to distinct ‘membrane-ruffled’ regions of the plasma membrane where it had increased co-localization with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. The results presented here advance our understanding regarding protein:protein interactions of MBP, and its multifunctionality in OLGs with regards to membrane formation and elaboration. / This work was supported by the Canadian Institutes of Health Research (MOP #86483, J.M.B. and G.H.), and Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC, G.H., RG121541). G.S.T.S. was a recipient of a Doctoral Studentship from the Multiple Sclerosis Society of Canada
|
9 |
Single molecule studies of synuclein family of proteins and peptides with nanopores2014 September 1900 (has links)
Alpha-synuclein (AS) is a natively unfolded protein whose structure is extremely sensitive to its environment. The hallmark of Parkinson’s disease (PD) is aggregation and deposition of AS in inclusion bodies. Formation of misfolded AS monomers which are partially folded is the first and critical stage in fibrillation of AS and is a good target for designing therapeutic strategies. Characterization the biochemical properties of partially folded intermediates induced by fibrillization and anti- fibrillization agents will help to design drugs as new inhibitors of AS misfolding and aggregation. Nanopore analysis is an emerging technique for studying the molecular mechanism of protein misfolding. This technique was used to characterize the conformational change of AS in the presence of two groups of chemicals; anti-parkinsonian small molecules (dopamine and nicotine) and Parkinson’s developing toxin (Cu(II) and methamphetamine). Other biophysical techniques such as NMR spectroscopy and isothermal titration calorimentry (ITC) were able to confirm the nanopore analysis results and also to study other biophysical properties of the partially folded intermediates such as the binding constant of the interaction and the secondary structure content. The results from nanopore analysis showed that both groups of ligands shifted the blockade current peak of AS (centered at -86 pA) to lower blockade currents but in a different manner. Anti-parkinsonian drugs shifted the blockade current of AS to intermediate peaks between -40 to -80 pA but Parkinson developing toxins shifted the peak to a lower blockade current centered at -25 pA which suggests a more compact conformation. Thus nanopore analysis distinguished the different conformation induced by different ligands. Furthermore nanopore analysis with AS fragments showed that these ligands bind to different regions of AS. NMR spectroscopy of AS in the presence of dopamine and nicotine isomers was in agreement with the nanopore analysis and showed conformational changes of AS in a concentration dependent manner. CD spectroscopy results showed that the secondary structure of AS alone and in the presence of ligands was mostly random coil and suggests a loop formation model for the interaction of ligands with AS. The results of this thesis showed the application of nanopore analysis as a real-time and label-free technique to screen a library of ligands for designing misfolding inhibitors for PD treatment. The result of a synergic experiment with nicotine and caffeine showed that combination of these anti-parkinsonian small molecules would be a promising new drug for treatment of PD.
|
10 |
Single Proteins under the Microscope: Conformations, Dynamics and Medicinal TherapiesLiu, Baoxu 20 June 2014 (has links)
We applied single-molecule fluorescence (SMF) methods to probe the properties of individual fluorescent probes, and to characterize the proteins of interest to which these probes were attached. One remarkable advantage of SMF spectroscopy is the ability to investigate heterogeneous subpopulations of the ensemble, which are buried in ensemble averaging in other measurements. Other advantages include the ability to probe the entire dynamic sequences of a single molecule transitioning between different conformational states.
For the purpose of having an extended observation of single molecules, while maintaining the native nanoscale surroundings, we developed an improved vesicle preparation method for encapsulating scarce biological samples. SMF investigations revealed that molecules trapped in vesicles exhibit nearly ideal single-emitter behavior, which therefore recommends the vesicle encapsulation for reproducible and reliable SMF studies.
Hyperactive Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein contributes significantly to human cancers, such as leukemia and lymphoma. We have proposed a novel therapeutic strategy by designing a cholesterol-based protein membrane anchor (PMA), to tether STAT3 to the cell membrane and thus inhibit unwanted transcription at the cell nucleus. We designed in vitro proof-of-concept experiments by encapsulating STAT3 and PMAs in phospholipid vesicles. The efficiency and the stability of STAT3 anchoring in the lipid membrane were interrogated via quantitative fluorescence imaging and multiparameter SMF spectroscopy. Our in vitro data paved the way for the in vivo demonstration of STAT3 inhibition in live cells, thus demonstrating that PMA-induced protein localization is a conceptually viable therapeutic strategy.
The recent discovery of intrinsically disordered proteins (IDPs) highlights important exceptions to the traditional structure-function paradigm. SMF methods are very suited for probing the properties of such highly heterogeneous systems. We studied in detail the effects of electrostatics on the conformational disorder of an IDP protein, Sic1 from yeast, and found that the electrostatic repulsion is a major factor controlling the dimensions of Sic1. Based on our data we also conclude that a rod-like shape seems a better candidate than a random Gaussian chain to describe and predict the behavior of Sic1.
|
Page generated in 0.3093 seconds