Spelling suggestions: "subject:"connées étiquettes limitée"" "subject:"connées étiquettes limité""
1 |
Application de méthodes d’apprentissage profond pour images avec structure additionnelle à différents contextesAlsène-Racicot, Laurent 05 1900 (has links)
Les méthodes d’apprentissage profond connaissent une croissance fulgurante. Une explication de ce phénomène est l’essor de la puissance de calcul combiné à l’accessibilité de données
en grande quantité. Néanmoins, plusieurs applications de la vie réelle présentent des difficultés: la disponibilité et la qualité des données peuvent être faibles, l’étiquetage des données
peut être ardu, etc. Dans ce mémoire, nous examinons deux contextes : celui des données
limitées et celui du modèle économique CATS. Pour pallier les difficultés rencontrées dans
ces contextes, nous utilisons des modèles d’apprentissage profond pour images avec structure
additionnelle. Dans un premier temps, nous examinons les réseaux de scattering et étudions
leur version paramétrée sur des petits jeux de données. Dans un second temps, nous adaptons les modèles de diffusion afin de proposer une alternative aux modèles à base d’agents
qui sont complexes à construire et à optimiser. Nous vérifions empiriquement la faisabilité
de cette démarche en modélisant le marché de l’emploi du modèle CATS.
Nous constatons tout d’abord que les réseaux de scattering paramétrés sont performants
sur des jeux de données de classification pour des petits échantillons de données. Nous
démontrons que les réseaux de scattering paramétrés performent mieux que ceux non paramétrés, c’est-à-dire les réseaux de scattering traditionnels. En effet, nous constatons que des
banques de filtres adaptés aux jeux de données permettent d’améliorer l’apprentissage. En
outre, nous observons que les filtres appris se différencient selon les jeux de données. Nous
vérifions également la propriété de robustesse aux petites déformations lisses expérimentalement.
Ensuite, nous confirmons que les modèles de diffusion peuvent être adaptés pour modéliser le marché de l’emploi du modèle CATS dans une approche d’apprentissage profond.
Nous vérifions ce fait pour deux architectures de réseau de neurones différentes. De plus,
nous constatons que les performances sont maintenues pour différents scénarios impliquant
l’apprentissage avec une ou plusieurs séries temporelles issues de CATS, lesquelles peuvent
être tirées à partir d’hyperparamètres standards ou de perturbations de ceux-ci. / Deep learning methods are booming. An explanation of this phenomenon is the rise of
computing power combined with the accessibility of large data quantity. Nevertheless, several
real-life applications present difficulties: the availability and quality of data can be low, data
labeling can be tricky, etc. In this thesis, we examine two contexts: that of limited data
and that of the CATS economic model. To overcome the difficulties encountered in these
contexts, we use deep learning models for images with additional structure. First, we examine
scattering networks and study their parameterized version on small datasets. In a second
step, we adapt diffusion models in order to propose an alternative to agent-based models
which are complex to build and to optimize. We empirically verify the feasibility of this
approach by modeling the labor market of the CATS model.
We first observe that the parameterized scattering networks perform well on classification
datasets for small samples of data. We demonstrate that parameterized scattering networks
perform better than those not parametrized, i.e. traditional scattering networks. Indeed, we
find that filterbanks adapted to the datasets make it possible to improve learning. Moreover,
we observe that the learned filters differ according to the datasets. We also verify the property
of robustness to small smooth deformations experimentally..
Then, we confirm that diffusion models can be adapted to model the labor market of
the CATS model in a deep learning approach. We verify this fact for two different neural
network architectures. Moreover, we find that performance is maintained for different scenarios involving training with one or more time series from CATS, which can be derived
from standard hyperparameters or perturbations thereof.
|
2 |
Parametric Scattering NetworksGauthier, Shanel 04 1900 (has links)
La plupart des percées dans l'apprentissage profond et en particulier dans les réseaux de neurones convolutifs ont impliqué des efforts importants pour collecter et annoter des quantités massives de données. Alors que les mégadonnées deviennent de plus en plus répandues, il existe de nombreuses applications où la tâche d'annoter plus d'un petit nombre d'échantillons est irréalisable, ce qui a suscité un intérêt pour les tâches d'apprentissage sur petits échantillons.
Il a été montré que les transformées de diffusion d'ondelettes sont efficaces dans le cadre de données annotées limitées. La transformée de diffusion en ondelettes crée des invariants géométriques et une stabilité de déformation. Les filtres d'ondelettes utilisés dans la transformée de diffusion sont généralement sélectionnés pour créer une trame serrée via une ondelette mère paramétrée. Dans ce travail, nous étudions si cette construction standard est optimale. En nous concentrant sur les ondelettes de Morlet, nous proposons d'apprendre les échelles, les orientations et les rapports d'aspect des filtres. Nous appelons notre approche le Parametric Scattering Network. Nous illustrons que les filtres appris par le réseau de diffusion paramétrique peuvent être interprétés en fonction de la tâche spécifique sur laquelle ils ont été entrainés. Nous démontrons également empiriquement que notre transformée de diffusion paramétrique partage une stabilité aux déformations similaire à la transformée de diffusion traditionnelle. Enfin, nous montrons que notre version apprise de la transformée de diffusion génère des gains de performances significatifs par rapport à la transformée de diffusion standard lorsque le nombre d'échantillions d'entrainement est petit. Nos résultats empiriques suggèrent que les constructions traditionnelles des ondelettes ne sont pas toujours nécessaires. / Most breakthroughs in deep learning have required considerable effort to collect massive amounts of well-annotated data. As big data becomes more prevalent, there are many applications where annotating more than a small number of samples is impractical, leading to growing interest in small sample learning tasks and deep learning approaches towards them.
Wavelet scattering transforms have been shown to be effective in limited labeled data settings. The wavelet scattering transform creates geometric invariants and deformation stability. In multiple signal domains, it has been shown to yield more discriminative representations than other non-learned representations and to outperform learned representations in certain tasks, particularly on limited labeled data and highly structured signals. The wavelet filters used in the scattering transform are typically selected to create a tight frame via a parameterized mother wavelet. In this work, we investigate whether this standard wavelet filterbank construction is optimal. Focusing on Morlet wavelets, we propose to learn the scales, orientations, and aspect ratios of the filters to produce problem-specific parameterizations of the scattering transform. We call our approach the Parametric Scattering Network. We illustrate that filters learned by parametric scattering networks can be interpreted according to the specific task on which they are trained. We also empirically demonstrate that our parametric scattering transforms share similar stability to deformations as the traditional scattering transforms. We also show that our approach yields significant performance gains in small-sample classification settings over the standard scattering transform. Moreover, our empirical results suggest that traditional filterbank constructions may not always be necessary for scattering transforms to extract useful representations.
|
Page generated in 0.0741 seconds