• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 13
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental analysis of fire-induced flows for the fire-safe design of double-skin facades

Kahrmann, Steffen January 2016 (has links)
Today, ever changing and advancing techniques of construction are constantly pushing the envelope of structural possibilities in the built environment. Although not new, the concept of Double-Skin Façades (DSF) finds increasing implementation with the advent of sustainable construction, aiming to reduce energy consumption to condition buildings whilst improving indoor air quality. As is the case with the traditional concept of the compartment fire, methodologies and assumptions on which our general understanding of the fire problem is based, did fundamentally not change. Inherently bound to this, is the concept of compartmentalisation, prescribing measures to avoid horizontal and vertical fire spread in buildings. A DSF, most commonly featuring a ventilated cavity between curtain wall and the secondary glass façade at an offset, is prone to drastically alter fire and smoke behaviour once able to enter. Unlike curtain walls, the chimney-like aspect ratio of such façades is able to trap fire and combustion gases within the cavity, potentially compromising the integrity of the building perimeter above the fire. The current approach to this issue tends to focus on using non-combustible construction materials and the installation of sprinkler systems to avoid breakage of window panes in the first place. Another topic of interest is the weak connection between floor slab and curtain wall which can allow vertical fire spread to adjacent floors. Research has also been discussing the use of mullions to deflect the fire plume away from the façade. Even if useful in DSF’s, aesthetics and problems with functionality will most likely prevent mullions from being introduced into the DSF. However, very little relevant research actually investigated the fire-induced flow structure under these conditions so that properly informed design decisions can be made. The project at hand aims to understand hazards to the floors above and below the fire floor by experimentally investigating the governing processes by means of large-scale fire testing and small-scale salt-water modelling (SWM). The gathered data shall serve as a basis to discuss current spandrel and cavity design decisions. Results have been compared in terms of dimensionless numbers and demonstrate complex interactions between DSF cavity width and spandrel height, encouraging a discussion about the need of further research of this topic.
2

Analysis of a Mechanically Ventilated Multiple-skin Facade with Between-the-Panes Venetian Blinds

Nemati, Omid 01 April 2009 (has links)
A Building Integrated Photovoltaic/Thermal (BIPV/T) system that consists of a mechanically ventilated, multi-skin facade, a between-the-panes venetian blind layer, and a between-the-panes Photovoltaic (PV) panel is considered. Ambient air is drawn in and forced to flow upward through the system. As air moves through the system, it is heated by the blind layer, the glazing layers, and the PV panel. This BIPV/T system is especially attractive because it can produce electricity and thermal energy in the form of preheated fresh air and allow for adjustable daylighting. There is a need to understand, design, and optimize BIPV/T systems. The velocity and temperature fields around the blind slats were experimentally and numerically studied. Experimental observations and numerical models are essential in understanding the complex fluid dynamical and thermal system and providing design and optimization guidelines. Solar-optical and Computational Fluid Dynamics (CFD) models were developed and validated at various blind slat angles and flow mean speeds. Particle Image Velocimetry (PIV) and temperature measurements were taken inside the ventilated facade. A simple empirical one-dimensional (1–D) model was developed, based on average surface temperatures and heat transfer coefficients, to quickly calculate average surface temperatures and heat flux rates. Between-the-panes convective heat transfer coefficients were obtained from CFD and used in the 1–D model. Despite high vertical temperature stratifications along the glazing, shading, and air layers, the 1–D model can predict the surface temperatures accurately and allow for future optimization and inclusion in building energy simulation software.
3

Analysis of a Mechanically Ventilated Multiple-skin Facade with Between-the-Panes Venetian Blinds

Nemati, Omid 01 April 2009 (has links)
A Building Integrated Photovoltaic/Thermal (BIPV/T) system that consists of a mechanically ventilated, multi-skin facade, a between-the-panes venetian blind layer, and a between-the-panes Photovoltaic (PV) panel is considered. Ambient air is drawn in and forced to flow upward through the system. As air moves through the system, it is heated by the blind layer, the glazing layers, and the PV panel. This BIPV/T system is especially attractive because it can produce electricity and thermal energy in the form of preheated fresh air and allow for adjustable daylighting. There is a need to understand, design, and optimize BIPV/T systems. The velocity and temperature fields around the blind slats were experimentally and numerically studied. Experimental observations and numerical models are essential in understanding the complex fluid dynamical and thermal system and providing design and optimization guidelines. Solar-optical and Computational Fluid Dynamics (CFD) models were developed and validated at various blind slat angles and flow mean speeds. Particle Image Velocimetry (PIV) and temperature measurements were taken inside the ventilated facade. A simple empirical one-dimensional (1–D) model was developed, based on average surface temperatures and heat transfer coefficients, to quickly calculate average surface temperatures and heat flux rates. Between-the-panes convective heat transfer coefficients were obtained from CFD and used in the 1–D model. Despite high vertical temperature stratifications along the glazing, shading, and air layers, the 1–D model can predict the surface temperatures accurately and allow for future optimization and inclusion in building energy simulation software.
4

Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns

Pagoulatou, M., Sheehan, Therese, Dai, Xianghe, Lam, Dennis 09 May 2014 (has links)
Yes / This paper presents the behaviour of circular concrete-filled double-skin steel tubular (CFDST) stub columns compressed under concentric axial loads. To predict the performance of such columns, a finite element analysis is conducted. Herein, for the accurate modelling of the double-skin specimens, the identification of suitable material properties for both the concrete infill and steel tubes is crucial. The applied methodology is validated through comparisons of the results obtained from the finite element analysis with those from past experiments. Aiming to examine the effect of various diameter-to-thickness (D/t) ratios, concrete cube strengths and steel yield strengths on the overall behaviour and ultimate resistance of the double-skin columns, a total of twenty-five models are created to conduct the parametric study. In addition, four circular concrete-filled steel tubes (CFST) are included to check the dissimilarities, in terms of their behaviour and weight, when compared with identical double-skin tubes. A new formula based on Eurocode 4 is proposed to evaluate the strength of the double-skin specimens. Based on the comparison between the results derived from the analysis, the proposed formulae for the concrete filled double-skin would appear to be satisfactory.
5

Integrated Thermal and Daylight Performance Comparison of Single and Double Glass Skin Facade for Hot Climate Conditions

Altahlawi, Naif Tarik 28 June 2019 (has links)
Visual integration of the building interior and exterior is one of the charms of today's architecture. The Double-Skin facade system is a technology that can reduce the drawbacks of using glass in a building's elevation. In fact, the double-skin façade (DSF) offers transparency while reducing energy consumption when compared to single-skin systems in cold and moderate weather conditions. However, there is no clear evidence of how the system will perform in hot climate conditions. In this research, a testing procedure was established to experimentally evaluate the performance of the double-skin façade system, data was collected to create multiple regression models, and then evaluate the double-skin façade's performance and compare it to a single-skin system in hot arid climate conditions. / Doctor of Philosophy / Improving the quality of indoor environments is a main goal in today’s architecture. Towards this goal, the use of glass and curtain walls is common in office buildings. The building façade is a key factor for the amount of energy consumed to reach comfort levels in the building. That is, because facades influence lighting, glare, heat gain, noise safety and energy usage. Therefore, the use of glass improves transparency which can interfere with comfort levels inside the building due to solar heat gain. The Double Skin façade system is widely adopted in Europe and has been shown to reduce energy used for heating in cold weather. In winter, heat losses can be reduced as the system’s intermediate cavity acts as a thermal buffer. However, there is no clear understanding of how the system will perform in hot arid climate conditions where cooling is the dominant operating mode. A Double Skin Façade can provide shading during the overheating period, while having the desired glass elevations sought by designers. This is due to ventilation and solar control devices located inside the system’s cavity. Being placed between the interior and the exterior glass panels, solar control devices are protected from the weather, which in return decreases its size. Furthermore, the additional glass panel allows windows in the system’s inner layer to be opened for natural ventilation. Unfortunately, the performance of the Double Skin Façade system for hot arid climate is not well documented. Therefore, the primary goal of this research is to compare the thermal and light performance of the Double Skin Façade system to a single façade system for hot weather conditions.
6

An investigation into the axial capacity of eccentrically loaded concrete filled double skin tube columns

Koen, Johan Alexander 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Concrete filled double skin tube (CFDST) columns is a new method of column construction. CFDST columns consists of two steel hollow sections, one inside the other, concentrically aligned. The cross-sections of the two hollow sections does not have to be the same shape. Concrete is cast in between the two hollow sections resulting in a CFDST. This study only considers CFDST columns constructed with circular steel hollow sections. The advantages of CFDST construction include: ● The inner and outer steel hollow sections replaces the traditional steel reinforcement that would be used in a normal reinforced concrete column. This reduces the construction time since there is no need to construct a reinforcing cage. ● The steel hollow sections acts as a stay in place formwork, eliminating the need for traditional formwork. This also reduces construction time. ● The steel hollow sections confine the concrete, making it more ductile and increasing its yield strength. The objective of this study is to identify methods that can predict the axial capacity of eccentrically loaded circular CFDST columns. Methods chosen for the investigation are: 1. Finite element model (FEM). A model was developed to predict the behaviour of eccentrically loaded CFDST columns. The FE model uses a concrete material model proposed in literature for stub columns. The aim was to determine whether the material model is suited for this application. 2. The failure load of CFDST columns under concentric loading was calculated using a model obtained in literature. These capacities were compared to the experimental test results of eccentrically loaded CFDST columns to establish a correlation. This study found that the concrete material model used does not adequately capture the behaviour resulting in the axial response of the column being too stiff. The difference between the eccentrically loaded experimental test results and the calculated concentrically loaded capacity showed a clear trend that could be used to predict the capacity of eccentrically loaded CFDST columns. / AFRIKAANSE OPSOMMING: Beton-gevulde dubbel laag pyp (BGDLP) kolomme is ‘n nuwe metode van kolom konstruksie. BGDLP kolomme bestaan uit twee staal pyp snitte, die een binne die ander geplaas met hul middelpunte opgelyn, die dwarssnit van die twee pype hoef nie dieselfde vorm te wees nie. Beton word dan in die wand tussen die twee pyp snitte gegiet. Die resultaat is ‘n hol beton snit. Hierdie studie handel slegs oor BGDLP kolomme wat met ronde pyp snitte verwaardig is. Die volgende voordele kan aan BGDLP toegeken word: ● Die binne en buite staalpype vervang die tradisionele staal bewapening was in normale bewapende-beton gebruik sou word. Dus verminder dit die tyd wat dit sal neem om die kolom op te rig. ● Die staalpypsnitte is ook permanente vormwerk. Dit doen dus weg met die gebruik van normale bekisting, wat ook konstruksie tyd spaar. ● Die buite-staalpypsnit bekamp die uitsetting van die beton onder las. Hierdie bekamping veroorsaak dat die beton se gedrag meer daktiel is en ‘n hoër falings spanning kan bereik. Die doel van die studie is om metodes te identifiseer wat gebruik kan word om die aksiale kapasiteit onder eksentriese laste van BGDLP kolomme te bepaal. Twee metodes was gekies: 1. Eindige element model. ‘n Model was ontwikkel om die gedrag van BGDLP kolomme te voorspel. Die mikpunt was om te bepaal of ‘n beton materiaal gedrag model vanuit die literatuur gebruik kan word om BGDLP kolomme te modelleer. 2. Die swiglas van BGDLP kolomme onder konsentriese belasting was bereken vanaf vergelykings uit die literatuur. Hierdie swiglaste was vergelyk met die eksperimentele toets resultate vir eksentriese belaste BGDLP kolomme om ‘n korrelasie te vind. Hierdie studie het bewys dat die beton materiaal model uit die literatuur kan nie gebruik word om die swiglaste van BGDLP kolomme te bepaal nie. Die model het die gedrag te styf gemodelleer. Die verskil tussen die berekende konsentriese belaste swiglas en die eksperimentele resultate van eksentriese BGDLP kolomme was voorspelbaar en kan gebruik word om die swiglas van eksentriese belaste BGDLP kolomme te voorspel.
7

Evaluation and design of double-skin facades for office buildings in hot climates

Yellamraju, Vijaya 30 September 2004 (has links)
The main objectives of this research are (a) to investigate the thermal effect of double skin facades in office buildings in hot climates and (b) to propose guidelines for their efficient design based on this evaluation. The study involves the energy performance analysis of two buildings in India. A base case with the existing building skin was simulated for both the cities. The main source for the high cooling loads was found to be heat gain through windows and walls. This led to the evolution of a series of facade strategies with the goals of reducing heat gain, providing ventilation and day-lighting. The buildings were then simulated for their energy performance with the proposed double-skin strategies. Each of these strategies was varied according to the layers constituting the facade, the transparency of the facade and the orientation of the facade to which it is applied. Final comparisons of energy consumption were made between the proposed options and the base case to find the most efficient strategy and also the factors that affected this efficiency. The simulations were done using the building simulation software, Ener-Win. The double skin was simulated as per an approximate and simplistic calculation of the u-value, solar heat gain coefficient and transmissivity properties of the layers constituting the facade. The model relied on logically arrived at assumptions about the facade properties that were approximately within 10% range of measured values. Based on inferences drawn from these simulations, a set of design guidelines comprised of goals and parameters was generated for design of double-skin facades in hot climates typical to most of the Indian subcontinent. It was realized that the double-skin defined typically as a 'pair of glass skins separated by an air corridor' may not be an entirely energy efficient design strategy for hot climates. However, when used appropriately in combination with other materials, in the right orientation and with the right transparency, a double-layered facade turns out to be an energy efficient solution.
8

Evaluation and design of double-skin facades for office buildings in hot climates

Yellamraju, Vijaya 30 September 2004 (has links)
The main objectives of this research are (a) to investigate the thermal effect of double skin facades in office buildings in hot climates and (b) to propose guidelines for their efficient design based on this evaluation. The study involves the energy performance analysis of two buildings in India. A base case with the existing building skin was simulated for both the cities. The main source for the high cooling loads was found to be heat gain through windows and walls. This led to the evolution of a series of facade strategies with the goals of reducing heat gain, providing ventilation and day-lighting. The buildings were then simulated for their energy performance with the proposed double-skin strategies. Each of these strategies was varied according to the layers constituting the facade, the transparency of the facade and the orientation of the facade to which it is applied. Final comparisons of energy consumption were made between the proposed options and the base case to find the most efficient strategy and also the factors that affected this efficiency. The simulations were done using the building simulation software, Ener-Win. The double skin was simulated as per an approximate and simplistic calculation of the u-value, solar heat gain coefficient and transmissivity properties of the layers constituting the facade. The model relied on logically arrived at assumptions about the facade properties that were approximately within 10% range of measured values. Based on inferences drawn from these simulations, a set of design guidelines comprised of goals and parameters was generated for design of double-skin facades in hot climates typical to most of the Indian subcontinent. It was realized that the double-skin defined typically as a 'pair of glass skins separated by an air corridor' may not be an entirely energy efficient design strategy for hot climates. However, when used appropriately in combination with other materials, in the right orientation and with the right transparency, a double-layered facade turns out to be an energy efficient solution.
9

Natural ventilation in double-skin fa??ade design for office buildings in hot and humid climate

Wong, Pow Chew James, Built Environment, Faculty of Built Environment, UNSW January 2008 (has links)
This research seeks to find a design solution for reducing the energy usage in high-rise office buildings in Singapore. There are numerous methods and techniques that could be employed to achieve the purpose of designing energy efficient buildings. The Thesis explores the viability of double-skin fa??ades (DSF) to provide natural ventilation as an energy efficient solution for office buildings in hot and humid environment by using computational fluid dynamic (CFD) simulations and case study methodologies. CFD simulations were used to examine various types of DSF used in office buildings and the behaviour of airflow and thermal transfer through the DSF; the internal thermal comfort levels of each office spaces were analyzed and compared; and an optimization methodology was developed to explore the best DSF configuration to be used in high-rise office buildings in the tropics. The correlation between the fa??ade configurations, the thermal comfort parameters, and the internal office space energy consumption through the DSF is studied and presented. The research outcome of the Thesis has found that significant energy saving is possible if natural ventilation strategies could be exploited with the use of DSF. A prototype DSF configuration which will be best suited for the tropical environment in terms of its energy efficiency through cross ventilation strategy is proposed in this Thesis. A series of comprehensive and user-friendly nomograms for design optimization in selecting the most appropriate double-skin fa??ade configurations with considerations of various orientations for the use in high-rise office buildings in the tropics were also presented.
10

Natural ventilation in double-skin fa??ade design for office buildings in hot and humid climate

Wong, Pow Chew James, Built Environment, Faculty of Built Environment, UNSW January 2008 (has links)
This research seeks to find a design solution for reducing the energy usage in high-rise office buildings in Singapore. There are numerous methods and techniques that could be employed to achieve the purpose of designing energy efficient buildings. The Thesis explores the viability of double-skin fa??ades (DSF) to provide natural ventilation as an energy efficient solution for office buildings in hot and humid environment by using computational fluid dynamic (CFD) simulations and case study methodologies. CFD simulations were used to examine various types of DSF used in office buildings and the behaviour of airflow and thermal transfer through the DSF; the internal thermal comfort levels of each office spaces were analyzed and compared; and an optimization methodology was developed to explore the best DSF configuration to be used in high-rise office buildings in the tropics. The correlation between the fa??ade configurations, the thermal comfort parameters, and the internal office space energy consumption through the DSF is studied and presented. The research outcome of the Thesis has found that significant energy saving is possible if natural ventilation strategies could be exploited with the use of DSF. A prototype DSF configuration which will be best suited for the tropical environment in terms of its energy efficiency through cross ventilation strategy is proposed in this Thesis. A series of comprehensive and user-friendly nomograms for design optimization in selecting the most appropriate double-skin fa??ade configurations with considerations of various orientations for the use in high-rise office buildings in the tropics were also presented.

Page generated in 0.0555 seconds