• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 11
  • 10
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of spray dryer performance

Goldberg, J. January 1986 (has links)
No description available.
2

Prediction of particle residence times in cascading rotary dryers

Sheikh, M. S. January 1987 (has links)
The objectives of this research were to provide a better understanding of particle motion in cascading rotary dryers. This would lead to more soundly based design procedures. Experiments were performed, to check the validity of a proposed design method for dryers operating in the under-loaded and design loaded conditions developed by Matchett and Baker, on a pilot plant rig at Teesside Polytechnic using wheat and sand in the absence of airflow. The model considers the particles to move in two parallel phases, the airborne phase contains the material in flight and the dense phase contains the remaining material which is caught on the flights and on the bottom of the drum. There is continuous Interchange of material between the two phases. A dimensionless number, dense phase velocity number 'a', has been defined which is a measure of the axial velocity of the material in the dense phase of the drum. The 'a' values were found to be in agreement with existing data and were found to be dependent on material and not on dryer speed or slope. Photographic studies of the dryer internals suggested that the assumption of a constant 0 value (measure of flight loading) In the original model was not valid and that 4) varied with number of flights. A model was developed to predict 0 which worked extremely well for large number of flights. The existing design model was therefore modified to take account of the variation In 4). However, the paired t-test Indicated that at 5% level of significance there was no difference between the original and the modified model, even though the modified model is physically more realistic. It is, however, recommended that the models be tested on a large number of flights and also large equipment, because It is expected that with a large number of flights there will be differences between the two models and the 0 model will be superior. The 'a' and am (the am value is a modified form of the 'a' value which takes into account the variation in flight loading) values were found to be Independent of operating conditions, flight angle and also dryer size but were dependent on material. The 'a' and am values were proportional to 1/number of flights. Particle motion in the dense is by bouncing, rolling and sliding, but the high dense phase velocity numbers obtained with zero flights (ar) suggested ii that rolling and sliding are the important mechanisms of the dense phase motion and may be far more important than bouncing. A model has also been developed to study the over-loaded regime. In the over-loaded regime It was found that dryer speed, slope, material and number of flights affected the dense phase motion and a simple relationship between the over-loaded dense phase velocity number (ao) and number of flights could not be developed with the limited data. Particle motion In the over-loaded regime was found to be very complex. The ao values could be predicted to within ± 35%. Estimates have been made of the transition holdup, marking the change from under-loaded to over-loaded behaviour, but It was found that the prediction of the transition holdup is also complex and could be predicted to within ± 45%. The am values could be predicted to an accuracy of ± 10%. Thus suggesting that the ao and the transition holdup numbers are not so reliable. Future work has been recommended particularly in the over-loaded regime and also on the transition region since it was found that the particle motion in these regions was complex. It has also been suggested that the models be tested in large Industrial units with and without air flow.
3

Thermal analysis of a clothes dryer heater box

Couture, Robert R. 12 1900 (has links)
No description available.
4

Design and testing of a natural convection solar fish dryer

Sotocinal, Samson A. January 1992 (has links)
A natural convection solar fish dryer consisting of a flat-plate solar collector, drying chamber, and an auxiliary heater was designed, constructed and tested in the Philippines. The dryer is capable of drying 5 kg of fish in 10 hours. / Water was first heated in a flat-plate solar collector then through thermosyphon effect, heat and mass was moved to the heat exchanger where heat was transferred to the air. Heated air was allowed to flow through the drying chamber where trays of prepared samples of fish were laid. Pre-drying treatment of fish similar to those used in commercial practice, were used for individual drying experiments in order to permit a general evaluation of the system. / Seven drying experiments using different fish samples were conducted and the data generated was used to determine the efficiency of the system in terms of solar energy utilization. Results indicate that the system function efficiently at a minimal water temperature increase of 10$ sp circ$C, and the dryer operates at a system efficiency of 9 per cent which compares well with the findings of Yu Wai Man (1986) which found that natural convection solar dryers operate in the efficiency range between 7 to 14 per cent.
5

Design and testing of a natural convection solar fish dryer

Sotocinal, Samson A. January 1992 (has links)
No description available.
6

Forced air solar system for drying of Arabica coffee in Kenya

Serem, Vincent Kipyego Arap January 1987 (has links)
No description available.
7

Comparative performance of solar cabinet, vacuum assisted solar and open sun drying methods

Perumal, Rajkumar. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Bioresource Engineering. Title from title page of PDF (viewed 2007/08/30). Includes bibliographical references.
8

Forced air solar system for drying of Arabica coffee in Kenya

Serem, Vincent Kipyego Arap January 1987 (has links)
No description available.
9

Computational Fluid Dynamics analysis of flow patterns in a thermal tray dryer

Badenhorst, Reginald Ivor 25 August 2010 (has links)
Industrial tray air-dryers are increasingly used for the drying of agricultural products. The main drawback of these dryers is the non-uniform velocity distribution in the drying zone resulting in a non-uniform drying of the product. Computational Fluid Dynamics (CFD) software was implemented to predict and decrease the non-uniform velocity distribution of various dryer configurations. Tunnel dryers in commercial use were used to obtain experimental data. The CFD results were correlated with the test data. Trolley and tray tunnel dryers provide a relatively simple, low capital intensive and versatile method for drying a wide range of products. Artificial drying has the advantage of controlled drying conditions compared to traditional sun drying. The main focus of every tunnel design should be the improvement of the quality of the product in terms of colour, texture and aroma. Increasing the evaporation rate without increasing the energy required to do so, should always be done in-line with this main objective. Many studies focus on the mango structure and food dehydration principles that influence the uniform drying product with the assumption that the airflow over the produce is uniform. Few have been conducted on the air movement inside industrial dryers. CFD analysis predicts the airflow without influencing the airflow pattern compared to the measuring equipment inside test dryers. The experimental data were obtained from an empty dryer without a flow diverter. This was compared to dryer with the flow diverter included and compared to a dryer with the trolleys, trays and mango slices included. The test results showed that turbulence created by this configuration, still played a major role in the nonuniform velocity distribution along the drying zone of the tunnel. The inclusion of a flow diverter did however dampen the swirl effect of the main fan. Measuring the velocity distribution was practically difficult with the handheld devices used, which influenced the accuracy of the measurements taken. This justified the CFD analysis in order to better visualise and predict the airflow pattern inside the dryer. The total average speed CFD results of the sections in the drying zone (without mangoes and trolleys) of the dryer without a flow diverter was 11.2% higher compared to the test results. It was 14% higher for the dryer with the flow diverter included. The dryer with the mangoes, trays, trolleys and flow diverter showed a large difference where the total average speed of the CFD analysis was 49% higher compared to the test results. The main reason for the difference of the CFD analysis compared to the measured results are the factors that influenced the uncertainty of the experimental set up. The CFD analysis showed that the coefficient of variance (CV) of the dryer with the flow diverter (mangoes and trolleys included) was 3% lower compared to the dryer without one. Various dryer configurations were analysed using the CFD software to investigate what the best combination of flow diverter, vanes and blanking-off plates would be. A dryer configuration where flow diverters (Up-and-downstream of the main fan) above the false ceiling and inside the drying zone was analysed. A 16% decrease in terms of the CV value was obtained compared to the dryer with just the flow diverter downstream of main fan above the false ceiling. There was however a large region of swirl upstream of the main above the false ceiling resulting in a larger loss of heated air through the outlet fan before it reached the drying zone. The cost of manufacturing a simple vane and flow diverter for an existing dryer is 4% of the initial building costs (excluding the initial cost of the trolleys). The overall drying uniformity of this dryer is improved according to the CFD analysis by 7%. A cost analysis (taking into account the 15 year life cycle of a dryer) in terms of the energy requirement to evaporate water from the drying zone, showed that the dryer with the flow diverter was 6% less expensive to run on a yearly basis. Labour costs will be lower due to man-hours saved in terms of sorting out the wet slices from the dried product. Resources (dryers and trolleys) that would have been used for re-drying the wet produce, could now be implemented to increase the production rate of the plant. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Mechanical and Aeronautical Engineering / unrestricted
10

A comparison of the effects of drying methods on 100 per cent cotton worn shirts and laundered only samples with permanent press and soil release finishes

Melton, Linda Kathryn, 1946- January 1970 (has links)
No description available.

Page generated in 0.0605 seconds