• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1131
  • 302
  • 164
  • 70
  • 48
  • 29
  • 26
  • 15
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • Tagged with
  • 2495
  • 597
  • 350
  • 276
  • 228
  • 220
  • 217
  • 196
  • 192
  • 186
  • 156
  • 152
  • 139
  • 125
  • 124
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Mineral matter effects in coal pyrolysis and hydropyroysis

Franklin, Howard D January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 294-308. / by Howard D. Franklin. / Ph.D.
142

Coal measures and coal mining in Iowa, including paleontology and a discussion on the coal formation; also the methods of mining

Hartman, Russell T. 01 January 1898 (has links)
No description available.
143

Analysis of Latrobe Valley brown coal using laser-induced breakdown spectroscopy

Wallis, Fiona, 1975- January 2001 (has links)
Abstract not available
144

Bulk density and angle of repose of coal

Liu, Chang, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
This thesis reports a study on the effects of size distribution, moisture content and oil addition on bulk density and angle of repose of coal. The experimental work includes four stages. The first stage is to develop reliable experimental techniques. The results confirm that ASTM cubic foot test is reliable for measurement of bulk density and angle of repose if properly operated, although the latter is better measured in a piling process. Stages 2 and 3 are to investigate the effects of size distribution by using -3.55mm% for stage 2 and mean size do.s for stage 3, water content and oil addition on bulk density and angle of repose of coal. For each of them, empirical equations are formulated to predict bulk density and angle of repose. The results indicate that the fraction -3.55mm cutting size in stage 2 does not affect bulk density significantly, while the increase of do.s decreases bulk density to a minimum and then increases. Particle size distribution does not affect angle of repose much. The increase of moisture content decreases bulk density and increases angle of repose significantly. The increase of oil addition increases bulk density while decreases angle of repose significantly. The correlation between bulk density and angle of repose can also be observed: the higher bulk density, the lower angle of repose. There are other variables affecting bulk density and angle of repose. They include oil type, absorption time discharging height and external loading. Their effects on bulk density and angle of repose are quantified in stage 4. The results suggest that, a higher discharging position or larger external loading increase bulk density significantly. Angle of repose decreases when increase the height of discharging position. Diesel oil performed better than waste oil addition in terms of bulk density enhancement. For most of the cases examined, bulk density and angle of repose become stable after ~24 hours oil absorption time.
145

Management of the mineral resource risk associated with near-density material in the beneficiation plant at Leeuwpan Coal Mine

Botha, Brendan William. January 1900 (has links)
Thesis (M.Sc.(Earth Science Practice & Management))--University of Pretoria, [2008]. / Abstract in English. Includes bibliographical references (leaves 85-88).
146

Controlled coal blending for power station optimisation

Coventry, Timothy Edward Jan 21 August 2012 (has links)
M.Ing. / Eskom's power stations receive their main supply of coal from mines next to the power stations. The coal supply contracts only specify maximum allowable variations of some coal quality parameters. The quality of the supplied coal can, however, vary greatly within a few hours. The boilers in the power plant are optimized for a certain quality of coal, while the supplied coal is burnt as it is received from the mine. The variations in the coal quality can, therefore, have a negative impact on both the life expectancy and maintenance costs of the power plant as well as the controllability of the boiler. The effects of short term variations in the coal qualities can be reduced by segregating the supplied coal into separate stockpiles according to coal quality parameters such as ash content and volatile matter, and then blending different portions from these stockpiles to a preferred coal quality before the coal goes to the boilers. A self organising feature map neural network was proposed in this research, to determine how to separate the supply coal, according to measured coal quality data. Furthermore, linear programming was proposed to determine the proportions to be taken from each stockpile in order to achieve a more consistent blended coal again. The segregating and blending systems are described in this thesis; and they were tested by means of a simulation based on measured coal quality data from a power station. It was shown that it is possible to successfully segregate coal from a single supply and then blend the different stockpiles to render coal with less short term variations in its quality parameters. The blending process uses stockpile size as its main driver to optimize the selection of the proportions, such that the most coal is taken from the largest stockpile, while the resultant coal quality remains within the specified constraints.
147

Completion and Initial Testing of a Pressurized Oxy-Coal Reactor

Gardner, Scott Hunsaker 22 November 2021 (has links)
Oxy-combustion is a process which removes nitrogen from air prior to combustion in order to produce a high concentration of CO2 in the exhaust. This enables CO2 liquefaction, transport, and storage to greatly reduce CO2 emissions to the atmosphere. Atmospheric oxy-coal combustion has been successfully demonstrated at industrial scales and could be retrofit in existing coal boilers, but thermodynamic efficiencies are low and therefore uneconomical. Pressurized oxy-coal combustion has the potential for higher efficiency and lower cost but requires new technologies related to the coal feed system, the burner, and ash management. This project describes work needed to complete the dry feed pressurized oxy-coal combustor (POC) at BYU. The POC required the software control system (OPTO22) to be completed, a reactor shakedown, and testing of a previously designed burner by recording reactor thermocouple, exhaust concentration, and radiometer measurements. The following has been successfully demonstrated: 1) reactor heat-up with natural gas 2) coal combustion within temperature limits of the reactor 3) slagging that allows ash management.
148

Optimum Processing of 1 mm by Zero Coal

Phillips, Dennis Ivan 01 May 1998 (has links)
Coal in the finer particle size ranges (below 1 mm) has always suffered from poor cleaning efficiencies. This problem has been exacerbated in recent years with the increased amount of high ash fines due to continuous mining machines and the mining of dirtier coal seams. In the present work, it is proposed to improve overall plant efficiencies by processing coarser coal in column flotation than is now commonly treated by that method. Column flotation for coarse coal is supported by actual lab and plant test data that result in a full-scale column plant installation. The fundamentals of coarse particle detachment from bubbles are reviewed and a new simplified model is developed which better handles cubical and rectangular coal particles. Much of the lower efficiency of fine coal cleaning is due to poor size separation of the fine-sized raw coal which results in misplaced high ash fines reporting to the coarser size streams. By sending coarser material to column flotation, the finest size separation that takes place in a plant can be as coarse as 0.5 mm or greater. The proper use of wash water in a flotation column then becomes the best mechanism for desliming of the high ash clays. This work quantifies the benefits of removing the high ash fines from the plant product and increasing overall plant yield by increasing the amount of near-gravity coarse material. The resulting yield gain is greater than that obtained from only the increased fine coal recovery. Methods of column operation for improved coarse coal recovery are also evaluated. / Ph. D.
149

THE EFFECT OF POTASSIUM ON THE KINETICS OF THE CHAR/WATER AND CHAR/CARBON DIOXIDE REACTIONS

Sams, David Alan January 1982 (has links)
No description available.
150

Alkali metal partitioning in a pulverized coal combustion environment.

Gallagher, Neal Benjamin. January 1992 (has links)
Fouling, slagging, corrosion, and emission of submicron particulate from pulverized coal combustors have been linked to vapor alkali. Size segregated fly ash samples extracted from a 17 kW down-fired pulverized coal combustor showed strong evidence of alkali vaporization. The fraction of sodium in sizes smaller than 0.65 μm (f(8A)) showed a correlation with acid soluble sodium divided by total silicates in the parent coal. Addition of silicates to coal reduced f(8A) for sodium. Potassium existing primarily in the mineral matter, did not show a similar correlation, but f(8A) for potassium did correlate with f(8A) for sodium. Bench scale experiments indicated potassium does not vaporize in the presence of Na or Cl alone, but requires both, and was only released when sodium was captured. Additional of sodium acetate to coal increased f(8A) for potassium. Equilibrium calculations, experiment, and modelling of sodium capture by silicates during pulverized coal combustion identified several important mechanisms governing alkali behavior. The mode of occurrence of alkali in the parent coal dictates its ability to vaporize, its release kinetics, and its sate as it diffuses to the char surface. Other species such as chlorine, sulfur, moisture, and other metals influence alkali stability in the vapor, its reactivity, and its condensation characteristics. Char oxidation can influence alkali vaporization, and capture by affecting included silicate surface area. Sodium reaction with silicates captures from 70 to over 95% of total sodium for typical coals. Silicate additive appears to be a viable technique for reducing the fraction of alkali in the vapor during combustion.

Page generated in 0.0495 seconds