1 |
Studies of computer aided image interpretaion in high resolution electron microscopyTang, Dong January 1992 (has links)
No description available.
|
2 |
Low-energy electron diffraction effects at complex interfacesOh, Doogie. January 2009 (has links)
Thesis (M. S.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2009. / Committee Chair: Thomas Orlando; Committee Member: Joseph Perry; Committee Member: Nicholas Hud; Committee Member: Phillip First; Committee Member: Rigoberto Hernandez.
|
3 |
Developments in the EBSP technique and their application to grain imagingDay, Austin January 1993 (has links)
No description available.
|
4 |
Thermal vibrations and surface dipole moments for LEED from alkali adsorbate systemsMoyses, Matthew January 1995 (has links)
No description available.
|
5 |
Development of experimental gas electron diffraction techniqueHayes, Stuart A. January 2008 (has links)
A state-of-the-art gas electron diffraction (GED) apparatus has been reassembled in the school of chemistry at the University of Edinburgh. This combines molecularbeam and telefocus-electron-gun technologies and the alignment of the electron beam produced by the latter has been discussed. A new custom-made CCD detector has also been installed and electron diffraction patterns for a few small molecules have been recorded. In analogy to the rotating sector in a conventional GED apparatus, the new camera contains an optical filter and a procedure for its calibration is outlined and followed step by step to produce an estimate of the filter transmittance. The data have been shown to be of less than ideal quality and the probable root of the problem is discussed. GED refinements of two pairs of compounds (arachno-6,9-decaboranes, and a covalent sulfonate and thiosulfonate) are presented, using data collected with the conventional Edinburgh GED apparatus.
|
6 |
Surface structure determination by Patterson inversion of multi-incidence leed IV-curves /Ma, King-man, Simon. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 57-58).
|
7 |
A structural analysis of H₂O on Cu{110} using a novel low flux Fibre-Optic LEED apparatusStockford, Chloe Anne January 2011 (has links)
No description available.
|
8 |
Diffraction and direct methods for surface structure determination朱翠屛, Chu, Tsui-ping. January 1997 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
|
9 |
Electron Diffraction Studies of Unsupported Antimony ClustersKaufmann, Martin January 2006 (has links)
This thesis contains two main parts: the first part focusses on an electron diffraction study on unsupported antimony (Sb) clusters, while in the second part the design and development of a time-of-flight mass spectrometer (TOFMS) is discussed. Electron diffraction is an ideal tool to study the structure of clusters entrained in a beam. The main advantage of this technique is the ability to study the clusters in situ and in an interaction-free environment. It is therefore not necessary to remove the particles from the vacuum system which would lead to oxidation. Since the particles do not have to be deposited on a sample for further investigation, there is also no substrate which could influence the cluster structure. An additional advantage is the short exposure to the electron beam, thereby minimising the likelihood of damaging the particles. Sb clusters were produced using an inert-gas aggregation source. To control the cluster properties the source temperature, pressure and type of cooling gas can be adjusted. In the range of source parameters tested, Sb clusters with three different structures were observed: a crystalline structure corresponding to the rhombohedral structure of bulk Sb, an amorphous structure equivalent to the structure of amorphous Sb thin films, and a structure with the same diffraction signature as Sb4 (Sb evaporates mainly as Sb4). This last structure was found to belong to large particles consisting of randomly oriented Sb4 units. In order to study the size distributions and morphologies of the Sb clusters, the clusters were deposited onto substrates and studied under an electron microscope. The crystalline particles showed a wide variety of strongly faceted shapes. Depending on source conditions, the average cluster diameters ranged from 15 to 130 nm. There was a considerable disagreement between these values and the size estimates from the diffraction results with the latter being smaller by an order of magnitude. This might be due to the existence of domains inside the clusters. The amorphous particles were all found to be spherical with mean sizes between 27 and 45 nm. The Sb4 particles showed a liquid-like morphology and tended to coalesce easily. Their sizes ranged from 18 to 35 nm. To obtain an independent method for determining the cluster size, a TOFMS was designed and developed in collaboration with Dr Bernhard Kaiser. However, the TOFMS failed to detect a cluster signal in the original set-up which is most likely due to a defective ioniser and underestimated cluster energies. Further tests were performed in a new vacuum system and mass spectra for palladium clusters were successfully recorded.
|
10 |
RHEED and TEM assessment of biocompatible coatingsMarlafeka, Spyridoula January 2003 (has links)
No description available.
|
Page generated in 0.0193 seconds