• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 26
  • 24
  • 15
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 259
  • 259
  • 101
  • 96
  • 43
  • 37
  • 36
  • 34
  • 30
  • 27
  • 25
  • 25
  • 23
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Optická emisní spektroskopie dohasínajícího plazmatu ve směsi dusík-argon / Optical emission spectoscopy of the nitrogen-argon post-discharge

Žáková, Marie January 2009 (has links)
The study of plasmas generated in pure nitrogen and their afterglows are a subject of many hundreds works bringing a lot of information about the kinetic processes and energy transfer reactions. The effect of nitrogen pink afterglow has a specific position among the other kinds of discharges and post-discharges. The post-discharge, and especially the pink afterglow, is extremely sensitive to the presence of various impurities and experimental conditions (total gas pressure in a discharge tube, temperature, etc.) because of their significant influence on all kinetic processes. That is the reason, why it is so important to study this processes. The DC flowing afterglow (generated using the hollow molybdenum electrodes in the distance of 12 cm, power ± 290 W) was used for the experimental part of this work. The discharge was created in Pyrex discharge tube at different concentration ratio of nitrogen and argon. The total gas presure was in range from 500 Pa to 5000 Pa. The emission spectra of post-discharge were recorded by TRIAX 550 spectrometer with CCD detector in the range of 320-780 nm. The vibrational populations at individual vibrational levels were calculated using the emission bands of the first (N2 (B 3g) N2 (A 3u+)) and the second (N2 (C 3u) N2 (B 3g)) positive and the first negative (N2+ (B 2u+) N2+ (X 2g+) nitrogen spectral systems. The dependencies of intensity on decay time and relative vibrational populations on argon concentration and pressure were obtained. The pink afterglow was very sharp in pure nitrogen at low pressure. With the increasing total pressure it was shifted to the later decay times and it was visible for longer time, too. The same effect was observed with the increase of argon concentration in the gas mixture. At the highest argon concentrations, especially at lower pressure, the effect of pink afterglow dissapeared. The knowledge of these processes can give the solution of all kinetic reactions in plasma and this can be used in plasma chemistry and for development of new technologies. This will be a subject of further intensive studies.
182

Studium procesů v dohasínajícím plazmatu / Study of Post-Discharge Processes

Soural, Ivo January 2011 (has links)
The decaying plasma was studied by the optical emission spectroscopy. DC discharge created at 45 – 200 mA in Pyrex and Quartz tubes in flowing regime was used. The emission of three nitrogen spectral systems (1st and 2nd positive and 1st negative) were studied in time evolution for pressures of 500 – 5 000 Pa at two wall temperatures – ambient and liquid nitrogen (150 K inside the decaying plasma). Results showed that all three nitrogen systems (respectively N2(B, v), N2(C, v) and N2+(B, v) states as their origins) had their population maxima called pink-afterglow in the afterglow part. These maxima decreased with the increase of pressure for all systems, and moved to the later decay time. Maxima increased with discharge current (respectively power) and moved to shorter time. Populations at temperature of 150 K were measured due to the experimental arrangement from 17 ms, only, and thus pink aftergow maximum wasn’t observed (only at 5 000 Pa some maximum was recognized). Populations were smaller at 150 K that populations measured at laboratory temperature at the middle decay time (50-100 ms). At the late time, the populations were higher at lower temperature at lower pressure. Higher shifts (in intensity and decaytime) of pink afterglow maxima were observed in Quartz tube in comparison with their values in Pyrex tube. Besides the populations, rotational temperatures of selected bands of three observed spetral systems (for 1st negative 0-0 band, 1st positive 2-0 band and for 2nd positive 0-2 band) were measured. Rotational temperatures were monitored from presumption that this kind of temperature is equal to temperature of neutral gas (at local thermodynamic equilibrium). Results from 1st negative and 1st positive system showed strong decreasing of rotational temperatures up to about 10 ms at post-discharge begin, then temperatures were constant up to 20 ms of decay time and after that they grew up. Temperatures increased with the increase of current. The part with decreased temperature correlated with pink-afterglow part of post-discharge. Unfortunately, rotational temperatures of 2nd positive system had bad reproducibility and the time profile shape was opposite. Experimental results were compared with numerical kinetic model created by group of prof. Vasco Guerra at Instituto Supetior Técnico in Portugal. Several sets of conditions for simulation at 500 and 1 000 K in active discharge were applicable for the calculation corresponding to the experiment. Comparison of numerical simulation and experimental data done for N2(B) state demonstrated that maxima populations in pink afterglow are depended on the temperature difference between active discharge and post discharge. Maxima populations were supposed in pink afterglow disappeared if the same temperatures in active and post discharges were supposed. Temperature in active discharge is higher at higher apllied power, as it was showed from rotational temperatures observation. The results clearly showed that real temperature profile must be included into the kinetic model.
183

Příprava modelových korozních vrstev na železe a jejich plazmochemická redukce. / Preparation and Plasmachemical Reduction of Model Corrosion Layers on Iron.

Sázavská, Věra January 2013 (has links)
The plasmachemical removal process of corrosion layers is based on a reduction effect of RF hydrogen low-pressure plasma, and it is used for archaeological objects. Incrustation layers on artifact surface become brittle and porous due to plasma processing. The structure and composition of corrosion layers is changed. Therefore, it is much easier to recover the original surface of the plasma treated artifacts in contrary to those treated by conventional ways. Moreover, we can save time on invasive and thus dangerous mechanical removal of corrosion layers as for example sanding is. After plasma treatment, we can observe fine details of the original surface and memory of tools used during its manufacturing. These details are important information on the origin and manufacturing methods of the artifacts. The plasma reduction process leads to the removal of impurities from cavities as well, and a function of mechanical components of archaeological object can be restored. Moreover, chlorides can be easily removed from the corrosion layers and thus any significant post-corrosion is protected. Each archaeological object is original and it has its own “corrosion history”. First, the object had been exposed to the atmosphere for a long time. Then, it had been often placed in a tomb or grave or it otherwise got into the soil or sea. Thus, each archaeological object was exposed to different corrosion stress (humidity, composition of corrosive environment, etc.). Due to these facts, any universal way of a corroded object treatment is very difficult or even impossible to propose. In this work, the problem was solved using model samples of common metals which were treated at various plasma treatment conditions. Archaeological objects made of iron are the most common artifacts, and the typical corrosion products on iron are akaganeite, rokuhnite, and szomolnokite. These three corrosion products were created on the model samples in laboratory and then, the plasmachemical reduction was applied for their removal. The experiment was done in a Quartz cylindrical reactor with capacitive coupled RF plasma created using outer electrodes. We used discharge power from 100 W to 400 W in a continuous or pulsed regime (duty cycle of 75 %, 50 % and 25 %). Flowing plasma was created in pure hydrogen at pressure of 150200 Pa. Sample temperature was monitored by a thermocouple, and it did not exceed 200C during all these experiments. This temperature is regarded as a limit temperature for metallographic changes of archaeological iron. Higher temperature can cause destruction of archaeological iron objects. The optical emission spectroscopy of OH radical was used for the process monitoring. We focused on the monitoring of OH-radicals generated in the plasma, which are characteristic species formed by this process. Each corrosion product has a different time evaluation of generated OH-radicals, which is closely related to the degradation of a given corrosion product. Corrosion layers were analyzed before and after the plasmachemical reduction by SEM-EDX. We have found that the plasmachemical reduction is not very suitable for the szomolnokite corrosion product, which is degraded with difficulty and at high applied powers, only. However, very good removal efficiency was obtained for the rokuhnite and akaganeite corrosion.
184

Studium titrace molekulárního kyslíku do dohasínajícího dusíkového plazmatu / Study of molecular oxygen titration into nitrogen post-discharge

Řehulková, Blanka January 2017 (has links)
A huge number of experiments were carried out in the field of nitrogen post-discharges during the last 50 or 60 years and they were supported by many published theoretical works. Some papers were focused also on the nitrogen active discharge, post-discharge itself, or they focused mainly on the kinetic processes running during the post-discharge period. This experimental work shows how oxygen titration into post-discharge will influence nitrogen flowing post-discharge. Experimental data were obtained by optical emission spectrometry, Spectra were measured in the range 300 - 700 nm at laboratory temperature of 300K. Discharge current was kept constant at the value of 120 mA relating to the total discharge power of 145 W. Pressure was kept constant, too, at the value of 1000 Pa. The nitrogen of 99.9999 % purity (further purified by Oxiclear column) flow was adjusted at 0.8 l/min. Flow of oxygen (99.95 % purity) through he titration capillary introduced to post-discharge from down stream direction, was kept at 4 ml/min. Both gas flows were controlled by mass flow controllers. The optical emission spectrometer Jobin Yvon TRIAX 550 with 300 gr/mm grating equipped by liquid nitrogen cooled CCD detector was used for the spectra acquisition. The integration time of 1 s was used at all experiments. The position of titration tube end introduced into post discharge from the down stream side was set from 5 to 25 cm with respect to the end of the active discharge; the step of 1 cm was used. The optical emission spectra were measured at positions from 3 to 29 cm with respect to the active discharge end. The following nitrogen spectral systems were identified in the spectra: 1st positive, 1st negative and 2nd positive. Besides them, some bands of NO-beta system were found. The intensity profiles along the post discharge were obtained for selected vibrational spectral bands of these spectral systems and changes in the vibrational distributions of upper electronic states of these spectral systems were determined.
185

Local Structural and Optical Characterization of Photonic Crystals by Back Focal Plane Imaging and Spectroscopy

Wagner, Rebecca 12 March 2015 (has links)
This thesis establishes methods to locally and effciently detect the fluorescence from photonic crystals (PCs) in dependence on wavelength and direction. These are applied to three dimensional (3D) PCs grown by vertical deposition of polystyrene beads. The experiments allow conclusions about the local 3D structure of a sample, about defects in its volume and about spatial structural variations. They thus provide more information than typical spectroscopy measurements that average over large areas and methods that only image the surface structure like scanning electron microscopy. A focused laser is used to excite emitters in the sample only locally. The fluorescence is then collected by a microscope objective. Every point in this objective’s back focal plane (BFP) corresponds to a certain direction. This property is utilized in two ways. When observing a small spectral range of the emission in the BFP, stop bands appear as intensity minima since they hinder the emission into the corresponding directions. Thus, back focal plane imaging (BFPI) allows to visualize stop bands of many directions at the same time. The detected patterns permit to find the in-plane and out-of-plane orientation of the PC lattice and to conclude on the presence of stacking faults. Spatial variations of the structure are observed on a length scale of a few micrometers. The depth of the stop band is reduced at sample positions, where structural changes occur. In back focal plane spectroscopy (BFPS), a slit selects light from certain points in the BFP, which is spectrally dispersed subsequently. This allows to record spectra from many directions simultaneously. From them, a lattice compression along the sample normal of about 4% is found. Small deformations are also observed for other directions. Scattering at defects redistributes the emission. This increases the detected intensity compared to homogeneous media at some stop band edges in a broad spectral range for samples thicker than the scattering mean free path. Thinner samples show a narrow enhancement due to an increase in the fractional density of optical states and thus in emission. BFPI and BFPS are also used to observe the growth of PCs from drying droplets. The experiments show that the beads initially form a non-close packed lattice. This causes stress as the lattice constant decreases, which is released by cracking of the PCs.
186

Studium laserové směsi v širokém tlakovém rozsahu / Study of laser mixture in the large pressure region

Morávek, Matěj Jan January 2012 (has links)
This work studies discharge plasma in a mixture of gases, similar to that used in the so-called CO2-lasers. This mixture consists of CO2, N2 and He. The effect of the mixture composition and discharge parameters (especially pressure, in the range of 266 Pa - 100 kPa) on the distribution of energy in the vibrational levels of nitrogen was examined. This is important parameter for modelling of the discharge plasma. The effect of the mixture composition on the degree of dissociation of the CO2 molecules was also studied. The relative concentration of CO was applied to find the conditions leading to a minimal dissociation of the carbon dioxide. Measurements of radial profiles were also made. Results from two discharge tubes made from different materials were compared. Two types of discharge were utilized to acquire a wide pressure range - low pressure DC glow discharge in the range of 266 Pa to 1330 Pa and dielectric barrier discharge in the range of 5 kPa to 100 kPa. Both discharges are used in commercial CO2-lasers. We observed a descending dependence of the vibrational temperature on the pressure and a big step caused by increased occurrence of standing ionizing waves in the mixtures with low nitrogen ratio. Vibrational temperature in the DBD was markedly lower than in the DC GD, because of the...
187

Evolution de surface lors de la corrosion de magnésium : nouvelles approches analytiques pour comprendre les mécanismes de corrosion et de protection / Surface evolution of corroding magnesium : new analytical approaches to understand corrosion mechanisms and protection strategies

Maltseva, Alina 26 September 2018 (has links)
Les alliages légers (Al, Mg) sont aujourd’hui majoritairement utilisés dans les industries aéronautique, électronique, automobile. Toutefois, la faible résistance à la corrosion et à l’abrasion de ces alliages restreint leur développement à grande échelle. Les nouveaux concepts de protection contre la corrosion des alliages légers se basent non seulement sur un effet barrière par une couche épaisse d'oxyde (PEO) ou peindre, mais surtout sur une protection active à l’aide d’inhibiteurs de corrosion spécifiques. Ces inhibiteurs de corrosion pourraient être libérés "sur demande" et génèrent un phénomène ‘d’auto guérison’. L’utilisation des méthodes d’analyse in situ and ex situ modernes spectroscopiques pourraient permettre de mettre en lumière l’évolution de systèmes aussi complexe et aider à mieux définir les facteurs régulant ces processus. / Nowadays light alloys (Al, Mg) are widely used in a number of areas such as electronics, aeronautic, automotive and construction industries. However, the low corrosion and wear resistance of these alloys hinders application of Al and Mg alloys on a larger scale. The new concepts for corrosion protection of light alloys should include not only barrier protection by a thick oxide layer (PEO) or by paint but also an active protection by specific corrosion inhibitors which can be released “on request” and ensure so-called “self-healing”. Use of in situ and ex situ spectroscopic methods could bring a new view to the evolution of such a complicated system and help to define factors controlling these processes.
188

Laboratory evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean / Laboratory evaluation of LIBS as a new in situ chemical sensing technique for the deep ocean

Michel, Anna Pauline Miranda, 1976- January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references. / Present-day expeditionary oceanography is beginning to shift from a focus on short-term ship and submersible deployments to an ocean observatory mode where long-term temporally-focused studies are feasible. As a result, a critical need for in situ chemical sensors is evolving. New sensors take a significant amount of time to develop; thus, the evaluation of techniques in the laboratory for use in the ocean environment is becoming increasingly important. Laser-induced breakdown spectroscopy (LIBS) possesses many of the characteristics required for such in situ chemical sensing, and is a promising technique for field measurements in extreme environments. Although many LIBS researchers have focused their work on liquid jets or surfaces, little attention has been paid to bulk liquid analysis, and especially to the effect of oceanic pressures on LIBS signals. In this work, laboratory experiments validate the LIBS technique in a simulated deep ocean environment to pressures up to 2.76 x 10⁷ Pa. A key focus of this work is the validation that select elements important for understanding hydrothermal vent fluid chemistry (Na, Ca, Mn, Mg, K, and Li) are detectable using LIBS. A data processing scheme that accurately deals with the extreme nature of laser-induced plasma formation was developed that allows for statistically accurate comparisons of spectra. The use of both single and double pulse LIBS for high pressure bulk aqueous solutions is explored and the system parameters needed for the detection of the key analytes are optimized. Using both single and double pulse LIBS, the limits of detection were found to be higher than expected as a result of the spectrometer used in this experimentation. However, the results of this validation show that LIBS possesses the characteristics to be a viable chemical sensing method for in situ analyte detection in high pressure environments like the deep ocean. / by Anna Pauline Miranda Michel. / Ph.D.
189

Studium dohasínajícího dusíkového plazmatu pomocí titrace rtuťových par / Study of nitrogen post-discharge by mercury vapor titration

Teslíková, Ivana January 2012 (has links)
The aim of this master thesis is a study of nitrogen post-discharge by mercury vapours titration. The nitrogen post-discharge is investigated for many years theoretically as well as for a practical use. The object of this master thesis is a study of kinetic processes ongoing at titrations of mercury vapours during the nitrogen post-discharge at different pressures and applied powers. All experimental data were obtained from an optical emission spectroscopy of nitrogen post-discharge. DC discharge in flowing regime was chosen for measurements. The first part of experiments was carried out at the constant discharge current (100 mA), voltage (1300 V) and wall temperature (300 K). The total gas pressure was varied in range of 500-3000 Pa at nitrogen flow in range of 0.12-0.68 l/min. Nitrogen flow values were arranged to obtain constant nitrogen flow velocity for all gas pressures. The second set of experiments studied power dependencies. The current was varied in the range of 50-200 mA for constant voltage 1300 V. The total gas pressure in this case was 1000 Pa. Mercury vapours were introduced into the system by titration tube at different post-discharge time. The nitrogen pink afterglow effect was well visible at all experimental conditions. This effect corresponds to the maximum intensity of light emission, which expresses as considerable growth of characteristic pink radiation in the post-discharge time. Optical emission spectra of post-discharge were taken in the range of 320-780 nm. Besides three nitrogen spectral systems (first and second positive and first negative), the mercury line at 254 nm was recorded in the second order spectrum at 508 nm under these conditions if mercury was added. This spectral line is excited under post-discharge conditions by collisionally induced resonance energy transfer from nitrogen highly vibrationally excited ground state metastables and it opens an unique technique for their monitoring. The dependence of relative intensities on decay time for mercury spectral line and selected nitrogen spectral systems at different titration positions were measured. The relative intensities of nitrogen bands decrease with increasing of mercury line relative intensity for all total gas pressures. The pink afterglow phenomenon shifts to the later decay times with the increasing of total gas pressure. In the case of experiments at different power, it can be seen that with decreasing power mercury spectral line intensity decreases in post-discharge time. The first detailed tests of the unique detection for highly excited of nitrogen metastables were completed. However this master thesis is concentrated on the basic research which supports better indication of kinetic processes and reactions leading to transformation of excitation energy, this new knowledge should be applied in future also in technologies based on the long-lived metastable induced reactions.
190

Studium vlivu vlhkosti na celkový sterilizační účinek dielektrického bariérového výboje / Influence of humidity on total sterilisation effect of dielectric barrier discharge

Kramárová, Petra January 2012 (has links)
The main subject of this diploma thesis is the study of the effect of humidity on the total sterilization effect of the dielectric barrier discharge. Sterilization is a process which can eliminate all forms of life. The plasma sterilization is one of the methods that are suitable for sterilization of temperature and chemical sensitive materials. This sterilization method was proved to be effective on the wide spectrum of procaryotic and eucaryotic microorganisms. Basically, the main inactivation factors for cells exposed to plasma are heat, UV radiation and various reactive species. Dielectric barrier discharge (DBD) operating at atmospheric pressure was used for the sterilization of the samples. The discharge was generated in dry air and in humid air. The plasma power densities were 2 160 mW.cm-3, 2 279 mW.cm-3 and 2 760 mW.cm-3 (dry air) or 2 326 mW.cm-3 and 2 850 mW.cm-3 (humid air). Humidity of air was achieved using a wash bottle filled with water through which air flowed into the DBD reactor. Fungi spores of Aspergillus niger were used as model microorganisms. Whatman paper No. 1 was used as the carrying medium. When comparing sterilization efficiency of humid and dry air operating at the same conditions, the higher sterilization effect was observed in humid air. The sterilization effect of the DBD generated in air was compared with results obtained during plasma generation in argon and nitrogen. At the same conditions, the highest sterilization effect was observed in argon, followed by humid air, nitrogen and dry air. It was found out that in our experimental setup the active species are probably the main inactivation mechanism. The influence of temperature on the inactivation of microorganisms was completely negligible. The discharge parameters were studied by means of the optical emission spectroscopy (OES). Plasma treated samples were analyzed employing scanning electron microscopy (SEM). Damage of the microorganisms due to the effect of plasma as well as plasma effect on the structure of the carrying medium was evaluated.

Page generated in 0.0324 seconds