• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting Workforce in Healthcare : Using Machine Learning Algorithms, Statistical Methods and Swedish Healthcare Data / Predicering av Arbetskraft inom Sjukvården genom Maskininlärning, Statistiska Metoder och Svenska Sjukvårdsstatistik

Diskay, Gabriel, Joelsson, Carl January 2023 (has links)
Denna studie undersöker användningen av maskininlärningsmodeller för att predicera arbetskraftstrender inom hälso- och sjukvården i Sverige. Med hjälp av en linjär regressionmodell, en Gradient Boosting Regressor-modell och en Exponential Smoothing-modell syftar forskningen för detta arbete till att ge viktiga insikter för underlaget till makroekonomiska överväganden och att ge en djupare förståelse av Beveridge-kurvan i ett sammanhang relaterat till hälso- och sjukvårdssektorn. Trots vissa utmaningar med datan är målet att förbättra noggrannheten och effektiviteten i beslutsfattandet rörande arbetsmarknaden. Resultaten av denna studie visar maskininlärningspotentialen i predicering i ett ekonomiskt sammanhang, även om inneboende begränsningar och etiska överväganden beaktas. / This study examines the use of machine learning models to predict workforce trends in the healthcare sector in Sweden. Using a Linear Regression model, a Gradient Boosting Regressor model, and an Exponential Smoothing model the research aims to grant needed insight for the basis of macroeconomic considerations and to give a deeper understanding of the Beveridge Curve in the healthcare sector’s context. Despite some challenges with data, the goal is to improve the accuracy and efficiency of the policy-making around the labor market. The results of this study demonstrates the machine learning potential in the forecasting within an economic context, although inherent limitations and ethical considerations are considered.

Page generated in 0.0742 seconds