• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 84
  • 42
  • 16
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 418
  • 418
  • 399
  • 121
  • 110
  • 91
  • 90
  • 86
  • 84
  • 82
  • 76
  • 70
  • 64
  • 61
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Mechanisms affecting the dynamic response of swirled flames in gas turbines / Mécanismes affectant la réponse de la flamme swirlée dans les turbines à gaz

Hermeth, Sébastian 28 September 2012 (has links)
Les réglementations toujours plus drastiques sur les émissions de polluants ont conduit au développement de systèmes de combustion opérant en régimes pauvres qui sont malheureusement sujet aux instabilités thermo acoustiques. La capacité de la Simulation aux Grandes Echelles (SGE) à simuler des turbines à gaz industrielles complexes de grande puissance est mise en évidence au cours de ce travail de thèse. Tout d’abord, la SGE est appliquée à un brûleur académique et validée par comparaison à des mesures effectuées à l’Université de Berlin ainsi qu’à des simulations SGE effectuées avec OpenFOAM chez Siemens. Afin de déterminer la stabilité de ce bruleur le couplage entre l’acoustique et la combustion est modélisé par l’approche de type fonction de transfert de flamme (FTF). Suite à ces calcules et l’évaluation de la FTF les fluctuations du nombre de swirl sont identifiées comme un paramètre à même de modifier cette réponse de flamme. Après cette première étape de validation, une turbine à gaz industrielle est simulée en SGE pour deux géométries différentes du brûleur et pour deux points de fonctionnement. La FTF issue de ces calculs est peu influencée par les deux points de fonctionnement. A l’inverse, des légères modifications de la géométrie du swirler modifient les caractéristiques de la FTF montrant que plusieurs mécanismes sont en jeu. Ces mécanismes sont identifiés comme étant la vitesse d’entrée, les fluctuations de swirl et les fluctuations de fraction de mélange. Cette dernière est causée par: 1) la pulsation du débit de carburant injecté et 2) la trajectoire fluctuante des jets de carburant. Bien que le swirler soit conçu pour fournir un mélange le plus homogène possible, d’importantes hétérogénéités de mélange à l’entrée de la chambre de combustion sont présentes. Les perturbations de mélange se combinent avec les fluctuations de vitesse (et donc avec les fluctuations de swirl) aboutissant à des résultats de FTF différents. Un modèle étendu pour la FTF reliant le dégagement de chaleur à la vitesse d’entrée et à la fluctuation de fraction de mélange (modèle MISO) se révèle être une bonne solution pour ces systèmes complexes. Une analyse non linéaire montre en outre que l’amplitude de forçage conduit non seulement à une saturation de la flamme, mais aussi à un changement de la réponse de flamme. La saturation de la flamme n’est vérifiée que pour la FTF globale et le gain augmente localement avec une amplitude croissante. Pour ce système on notera enfin que la flamme linéaire, comme la flamme non linéaire, ne sont pas compactes: certaines zones pourtant situées l’une à coté de l’autre, ont des différences significatives de délai de FTF, montrant que certaines parties de la flamme amortissent l’excitation alors que d’autres l’amplifient. / Modern pollutant regulation have led to a trend towards lean combustion systems which are prone to thermo-acoustic instabilities. The ability of Large Eddy Simulation (LES) to handle complex industrial heavy-duty gas turbines is evidenced during this thesis work. First, LES is applied to an academic single burner in order to validate the modeling against measurements performed at TU Berlin and against OpenFoam LES simulations done at Siemens. The coupling between acoustic and combustion is modeled with the Flame Transfer Function (FTF) approach and swirl number fluctuations are identified changing the FTF amplitude response of the flame. Then, an industrial gas turbine is analyzed for two different burner geometries and operating conditions. The FTF is only slightly influenced for the two operating points but slight modifications of the swirler geometry do modify the characteristics of the FTF showing that a simple model taking only into account the flight time is not appropriate and additional mechanisms are at play. Those mechanisms are identified being the inlet velocity, the swirl and the inlet mixture fraction fluctuations. The latter is caused by two mechanisms: 1) the pulsating injected fuel flow rate and 2) the fluctuating trajectory of the fuel jets. Although the diagonal swirler is designed to provide good mixing, effects of mixing heterogeneities at the combustion chamber inlet occur. Mixture perturbations phase with velocity (and hence with swirl) fluctuations and combine with them to lead to different FTF results. Another FTF approach linking heat release to inlet velocity and mixture fraction fluctuation (MISO model) shows further to be a good solution for complex systems. A nonlinear analysis shows that the forcing amplitude not only leads to a saturation of the flame but also to changes of the delay response. Flame saturation is only true for the global FTF and the gain increases locally with increasing forcing amplitude. Both, the linear and the nonlinear flames, are not compact: flame regions located right next to each other exhibited significant differences in delay meaning that at the same instant certain parts of the flame damp the excitation while others feed it.
252

LES of two-phase reacting flows : stationary and transient operating conditions / Simulations aux grandes échelles découlements diphasiques réactifs : régimes stationnaires et transitoires

Eyssartier, Alexandre 05 October 2012 (has links)
L'allumage et le réallumage de haute altitude présentent de grandes difficultés dans le cadre des chambres de combustion aéronautiques. Le succès d'un allumage dépend de multiples facteurs, des caractéristiques de l'allumeur à la taille des gouttes du spray en passant par le niveau de turbulence au point d'allumage. Déterminer la position optimale de l'allumeur ou le potentiel d'allumage d'une source d'énergie donnée à une position donnée sont ainsi des paramètres essentiels lors du design de chambre de combustion. Le but de ces travaux de thèse est d'étudier l'allumage forcé des chambres de combustion aéronautiques. Pour cela, des Simulation numériques aux Grandes Echelles (SGE) d'écoulements diphasiques réactifs sont utilisées et analysées. Afin de les valider, des données expérimentales issues du banc MERCATO installé à l'ONERA Fauga-Mauzac sont utilisées. Cela permet dans un premier temps de valider la méthodologie ainsi que les modèles utilisés pour les SGE diphasiques évaporantes avant leur utilisation dans d'autres conditions d'écoulement. Le cas diphasique réactif statistiquement stationnaire est ensuite comparé aux données disponibles pour évaluer les modèles en condition réactives. Ce cas est étudié plus en détail à travers l'analyse de caractéristiques de la flamme. Celle-ci semble être le théâtre de régimes de combustion très différents. On note aussi que la détermination de la méthode numérique la plus appropriée pour le calcul d'écoulements diphasiques n'est pas évidente. De plus, deux méthodes numériques différentes peuvent donner des résultats en bon accord avec l'expérience et pourtant avoir des modes de combustion différents. Les capacités de la SGE à correctement calculer un écoulement diphasique réactif étant validé, des SGE du phénomène transitoire d'allumage sont effectuées. La sensibilité observée expérimentalement de l'allumage aux conditions initiales, i.e. à l'instant de claquage, est retrouvé par les SGE. L'analyse met en évidence le rôle prépondérant de la dispersion du spray dans le développement initial du noyau de flamme. L'utilisation des SGE pour calculer les séquences d'allumage fournie de nombreuses informations sur le phénomène d'allumage, cependant d'un point de vue industriel, cela ne donne pas de résultat optimal, à moins de ne tester toutes les positions, ce qui rendrait le coût CPU déraisonnable. Des alternatives sont donc nécessaires et font l'objet de la dernière partie de ces travaux. On propose de dériver un critère local d'allumage, donnant la probabilité d'allumage à partir d'un écoulement diphasique (air et carburant) non réactif instationnaire. Ce modèle est basé sur des critères liés aux différentes phases menant à un allumage réussi, de la formation d'un premier noyau à la propagation de la flamme vers l'injecteur. Enfin, des comparaisons avec des données expérimentales sur des chambres aéronautiques sont présentées et sont en bon accord, indiquant que le critère d'allumage proposé, couplé avec une SGE d'écoulement diphasique non réactif, peut être utilisé pour optimiser la puissance et la position du système d'allumage. / Ignition and altitude reignition are critical issues for aeronautical combustion chambers. The success of ignition depends on multiple factors, from the characteristics of the igniter to the spray droplet size or the level of turbulence at the ignition site. Finding the optimal location of the igniter or the potential of ignition success of a given energy source at a given location are therefore parameters of primary importance in the design of combustion chambers. The purpose of this thesis is to study forced ignition of aeronautical combustion chambers. To do so, Large Eddy Simulations (LES) of two-phase reacting flows are performed and analyzed. First, the equations of the Eulerian formalism used to describe the dispersed phase are presented. To validate the successive LES, experimental data from the MERCATO bench installed at ONERA Fauga-Mauzac are used. It allows to validate the two-phase evaporating flow LES methodology and models prior to its use to other flow conditions. The statistically stationary two-phase flow reacting case is then compared to available data to evaluate the model in reacting conditions. This case is more deeply studied through the analysis of the characteristics of the flame. This last one appears to experience very different combustion regimes. It is also seen that the determination of the most appropriate methodology to compute two-phase flow flame is not obvious. Furthermore, two different methodologies may both agree with the data and still have different burning modes. The ability of the LES to correctly compute burning two-phase flow being validated, LES of the transient ignition phenomena are performed. The experimentally observed sensitivity of ignition to initial conditions, i.e. to sparking time, is recovered with LES. The analysis highlights the major role played by the spray dispersion in the development of the initial flame kernel. The use of LES to compute ignition sequences provides a lot of information about the ignition phenomena, however from an industrial point of view, it does not give an optimal result, unless all locations are tested, which brings the CPU cost to unreasonable values. Alternatives are hence needed and are the objective of the last part of this work. It is proposed to derive a local ignition criterion, giving the probability of ignition from the knowledge of the unsteady non-reacting two-phase (air and fuel) flow. This model is based on criteria for the phases of a successful ignition process, from the first kernel formation to the flame propagation towards the injector. Then, comparisons with experimental data on aeronautical chambers are done and show good agreement, indicating that the proposed ignition criterion, coupled to a Large Eddy Simulation of the stationary evaporating two-phase non-reacting flow, can be used to optimize the igniter location and power.
253

La Simulation aux Grandes Echelles : un outil pour la prédiction des variabilités cycliques dans les moteurs à allumage commandé ? / Is Large Eddy Simulation a suitable tool to predict cycle-to-cycle variations in spark ignition engines?

Granet, Victor 20 September 2011 (has links)
L'amélioration des moteurs à allumage commandé représente un défi de première importance pour les ingénieurs afin de produire plus d'énergie, de consommer moins de matière première et de réduire les émissions polluantes. Les nouvelles technologies apparues ces dernières années amènent les moteurs de plus en plus proches de leurs limites de fonctionnement, favorisant ainsi des phénomènes néfastes qui doivent être contrôlés. Parmi ces phénomènes, les variations cycle-à-cycle (VCC) doivent être minimisées pour garder une performance optimale et éviter une dégradation rapide du moteur. La Simulation aux Grandes Echelles (SGE) est un outil prometteur afin de prédire numériquement les niveaux de variabilités obtenues lors du design d'un moteur (limitant ainsi les coûteuses campagnes de mesures expérimentales). Ce manuscrit s'est attaché à développer une méthodologie numérique pour la prédiction des variabilités cycliques, à simuler un nombre suffisant de cycles pour pouvoir estimer les niveaux de VCC et à valider les résultats obtenus par rapport aux résultats expérimentaux. La SGE semble capter les points de fonctionnements stable et instable étudiés. Les sources qui provoquent ces VCC ont aussi été analysées et une modification du fonctionnement du moteur a été proposée afin de réduire les VCC. / The improvement of the spark ignition engines is a major challenge for engineers in order to produce more energy, to minimize fuel consumption and to reduce the pollutant emissions. The new technologies which appear in the last years bring the engines closer to their stability limit while increasing various unwanted phenomena. Among these phenomena, cycle-to-cycle variation (CCV) need to be minimized in order to keep the performances as high as possible and avoid damages on the engines. Large Eddy Simulation (LES), which is a very promising tool in order to predict the level of CCV of a given engine, has been used in the present document to simulate a mono-cylinder spark ignition engine. The present document presented a numerical methodology for the prediction of CCV, numerous engine cycles were simulated by LES in order to validate the results in comparison to the experimental findings. The LES seems to be able to capture stable and instable (in terms of CCV) operating points of the engine. In addition, the sources of CCV were also analyzed and a modification of the engine has been proposed to reduce CCV.
254

Numerical & physical modelling of fluid flow in a continuous casting mould : Flow dynamics studies for flexible operation of continuous casters

Barestrand, Henrik, Forslund, Tobias January 2016 (has links)
The current demands on Swedish steel industry to produce low quantity batches of specialized products requires research on steel casting processes. There are several physical processes that need be taken into account for this problem to be viewed in full light such as thermal-processes, solidification and fluid dynamics. This work focuses on the fluid-dynamics part; more specifically, the dependence of flow quality within the caster on nozzle and mould geometry. The simulations are carried out using a scale-resolving method, in specific LES (Large Eddy Simulation) which is coupled with a DPM (Discrete Phase Model) to model Argon behaviour. The results of these simulations are presented and validated against physical experiment and data from industrial trials. Conclusions are drawn regarding optimal nozzle types in respect to different mould geometries. The mould eigenfrequencies are shown to exhibit a connection with the casting velocity. This results in so called sweet spots in casting velocity where flow irregularities due to sloshing is minimal. It is shown that the mountain type nozzle is preferable for smaller geometries whilst comparatively larger geometries benefit from a cup type. / FLOWFLEX CC
255

Multi-regime Turbulent Combustion Modeling using Large Eddy Simulation/ Probability Density Function

Shashank Satyanarayana Kashyap (6945575) 14 August 2019 (has links)
Combustion research is at the forefront of development of clean and efficient IC engines, gas turbines, rocket propulsion systems etc. With the advent of faster computers and parallel programming, computational studies of turbulent combustion is increasing rapidly. Many turbulent combustion models have been previously developed based on certain underlying assumptions. One of the major assumptions of the models is the regime it can be used for: either premixed or non-premixed combustion. However in reality, combustion systems are multi-regime in nature, i.e.,\ co-existence of premixed and non-premixed modes. Thus, there is a need for development of multi-regime combustion models which closely follows the physics of combustion phenomena. Much of previous modeling efforts for multi-regime combustion was done using flamelet-type models. As a first, the current study uses the highly robust transported Probability Density Function (PDF) method coupled with Large Eddy Simulation (LES) to develop a multi-regime model. The model performance is tested for Sydney Flame L, a piloted methane-air turbulent flame. The concept of flame index is used to detect the extent of premixed and non-premixed combustion modes. The drawbacks of using the traditional flame index definition in the context of PDF method are identified. Necessary refinements to this definition, which are based on the species gradient magnitudes, are proposed for the multi-regime model development. This results in identifying a new model parameter beta which defines a gradient threshold for the calculation of flame index. A parametric study is done to determine a suitable value for beta, using which the multi-regime model performance is assessed for Flame L by comparing it against the widely used non-premixed PDF model for three mixing models: Modified Curl (MCurl), Interaction by Exchange with Mean (IEM) and Euclidean Minimum Spanning Trees (EMST). The multi-regime model shows a significant improvement in prediction of mean scalar quantities compared to the non-premixed PDF model when MCurl mixing model is used. Similar improvements are observed in the multi-regime model when IEM and EMST mixing models are used. The results show potential foundation for further multi-regime model development using PDF model.
256

Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines

Potier, Luc 24 May 2018 (has links) (PDF)
Combustion in cryogenic engines is a complex phenomenon, involving either liquid or supercritical fluids at high pressure, strong and fast oxidation chemistry, and high turbulence intensity. Due to extreme operating conditions, a particularly critical issue in rocket engine is wall heat transfer which requires efficient cooling of the combustor walls. The concern goes beyond material resistance: heat fluxes extracted through the chamber walls may be reused to reduce ergol mass or increase the power of the engine. In expander-type engine cycle, this is even more important since the heat extracted by the cooling system is used to drive the turbo-pumps that feed the chamber in fuel and oxidizer. The design of rocket combustors requires therefore an accurate prediction of wall heat flux. To understand and control the physics at play in such combustor, the Large Eddy Simulation (LES) approach is an efficient and reliable numerical tool. In this thesis work, the objective is to predict wall fluxes in a subcritical rocket engine configuration by means of LES. In such condition, ergols may be in their liquid state and it is necessary to model liquid jet atomization, dispersion and evaporation.The physics that have to be treated in such engine are: highly turbulent reactive flow, liquid jet atomization, fast and strong kinetic chemistry and finally important wall heat fluxes. This work first focuses on several modeling aspects that are needed to perform the target simulations. H2/O2 flames are driven by a very fast chemistry, modeled with a reduced mechanism validated on academic configurations for a large range of operating conditions in laminar pre- mixed and non-premixed flames. To form the spray issued from the atomization of liquid oxygen (LOx) an injection model is proposed based on empirical correlations. Finally, a wall law is employed to recover the wall fluxes without resolving directly the boundary layer. It has been specifically developed for important temperature gradients at the wall and validated on turbulent channel configurations by comparison with wall resolved LES. The above models are then applied first to the simulation of the CONFORTH sub-scale thrust chamber. This configuration studied on the MASCOTTE test facility (ONERA) has been measured in terms of wall temperature and heat flux. The LES shows a good agreement compared to experiment, which demonstrates the capability of LES to predict heat fluxes in rocket combustion chambers. Finally, the JAXA experiment conducted at JAXA/Kakuda space center to observe heat transfer enhancement brought by longitudinal ribs along the chamber inner walls is also simulated with the same methodology. Temperature and wall fluxes measured with smooth walls and ribbed walls are well recovered by LES. This confirms that the LES methodology proposed in this work is able to handle wall fluxes in complex geometries for rocket operating conditions.
257

Numerical simulation of a marine current turbine in turbulent flow

Xin, Bai January 2014 (has links)
The marine current turbine (MCT) is an exciting proposition for the extraction of renewable tidal and marine current power. However, the numerical prediction of the performance of the MCT is difficult due to its complex geometry, the surrounding turbulent flow and the free surface. The main purpose of this research is to develop a computational tool for the simulation of a MCT in turbulent flow and in this thesis, the author has modified a 3D Large Eddy Simulation (LES) numerical code to simulate a three blade MCT under a variety of operating conditions based on the Immersed Boundary Method (IBM) and the Conservative Level Set Method (CLS). The interaction between the solid structure and surrounding fluid is modelled by the immersed boundary method, which the author modified to handle the complex geometrical conditions. The conservative free surface (CLS) scheme was implemented in the original Cgles code to capture the free surface effect. A series of simulations of turbulent flow in an open channel with different slope conditions were conducted using the modified free surface code. Supercritical flow with Froude number up to 1.94 was simulated and a decrease of the integral constant in the law of the wall has been noticed which matches well with the experimental data. Further simulations of the marine current turbine in turbulent flow have been carried out for different operating conditions and good match with experimental data was observed for all flow conditions. The effect of waves on the performance of the turbine was also investigated and it has been noticed that this existence will increase the power performance of the turbine due to the increase of free stream velocity.
258

Análise da influência das propriedades radiativas de um meio participante na interação turbulência-radiação em um escoamento interno não reativo

Fraga, Guilherme Crivelli January 2016 (has links)
A interação turbulência-radiação (TRI, do inglês Turbulence-Radiation Interaction) resulta do acoplamento altamente não linear entre flutuações da intensidade de radiação e flutuações da temperatura e da composição química do meio, e tem-se demonstrado experimentalmente, teoricamente e numericamente que este é um fenômeno relevante em diversas aplicações envolvendo altas temperaturas, especialmente em problemas reativos. Neste trabalho, o TRI é analisado em um escoamento interno não reativo de um gás participante que se desenvolve em um duto de seção transversal quadrada, para diferentes intensidades de turbulência do escoamento e considerando duas espécies distintas para a composição do fluido de trabalho (dióxido de carbono e vapor de água). O objetivo central é avaliar como a inclusão ou não da variação espectral das propriedades radiativas do meio no cálculo influencia a magnitude do TRI. Isso é feito através de simulações numéricas no código de dinâmica dos fluidos computacional Fire Dynamics Simulator (FDS), que resolve, através do método dos volumes finitos, as equações fundamentais que regem o problema – isto é, os balanços de massa, de quantidade de movimento e de energia e a equação de estado – em uma formulação adequada para baixos números de Mach, utilizando um algoritmo de solução explícito e de segunda ordem no tempo e no espaço. A turbulência é modelada através da simulação de grandes escalas (LES, do inglês Large Eddy Simulation), empregando-se o modelo de Smagorinsky dinâmico para o fechamento dos termos submalha; para a radiação térmica, o método dos volumes finitos é utilizado na discretização da equação da transferência radiativa e os modelos do gás cinza e da soma-ponderada-de-gases-cinza (WSGG, do inglês Weighted-Sum-of-Gray-Gases) são implementados como forma de desconsiderar e de incluir a dependência espectral das propriedades radiativas, respectivamente. A magnitude do TRI sobre o problema é avaliada através de diferenças entre as médias temporais dos fluxos de calor superficiais e do termo fonte radiativo obtidas em cálculos que consideram os efeitos do fenômeno e cálculos que os negligenciam. Em geral, a interação turbulência-radiação mostrou ser pouco importante em todos os casos considerados, o que concorda com resultados de outros estudos sobre o tema em escoamento não reativos. Com o modelo WSGG, as contribuições do fenômeno foram maiores do que com a hipótese do gás cinza, evidenciando que a inclusão da variação espectral na solução do problema radiativo tem um impacto sobre a magnitude dos efeitos do TRI. Além disso, é feita uma discussão, em parte inédita no contexto do TRI, sobre diferentes metodologias para a análise do fenômeno. Finalmente, é proposto um fator de correção para o termo fonte radiativo médio no modelo WSGG, que é validado através de sua implementação nos casos simulados. Em estudos futuros, uma análise de sensibilidade sobre os termos constituintes desse fator de correção pode levar a um melhor entendimento de como as flutuações de temperatura se correlacionam com o fenômeno da interação turbulência-radiação. / Turbulence-radiation interaction (TRI) results from the highly non-linear coupling between fluctuations of radiation intensity and fluctuations of temperature and chemical composition of the medium, and its relevance in a number of high-temperature problems, especially when chemical reactions are included, has been demonstrated experimentally, theoretically, and numerically. In the present study, the TRI is analyzed in a channel flow of a non-reactive participating gas for different turbulence intensities of the flow at the inlet and considering two distinct species for the medium composition (carbon dioxide and water vapor). The central objective is to evaluate how the inclusion or not of the spectral variation of the radiative properties of a participating gas in the radiative transfer calculations affects the turbulence-radiation interaction. With this purpose, numerical simulations are performed using the computational fluid dynamics Fortranbased code Fire Dynamics Simulator, that employs the finite volume method to solve a form of the fundamental equations – i.e., the mass, momentum and energy balances and the state equation – appropriate for low Mach number flows, through an explicit second-order (both in time and in space) core algorithm. Turbulence is modeled by the large eddy simulation approach (LES), using the dynamic Smagorinsky model to close the subgrid-scale terms; for the thermal radiation part of the problem, the finite volume method is used for the discretization of the radiative transfer equation and the gray gas and weighted-sum-of-gray-gases (WSGG) models are implemented as a way to omit and consider the spectral dependence of the radiative properties, respectively. The TRI magnitude in the problem is evaluated by differences between values for the time-averaged heat fluxes at the wall (convective and radiative) and for the time-averaged radiative heat source calculated accounting for and neglecting the turbulence-radiation interaction effects. In general, TRI had little importance over all the considered cases, a conclusion that agrees with results of previous studies. When using the WSGG model, the contributions of the phenomenon were greater that with the gray gas hypothesis, demonstrating that the inclusion of the spectral variance in the solution of the radiative problem has an impact in the TRI effects. Furthermore, this paper presents a discussion, partly unprecedented in the context of the turbulence-radiation interaction, about the different methodologies that can be used for the TRI analysis. Finally, a correction factor is proposed for the time-averaged radiative heat source in the WSGG model, which is then validated by its implementation in the simulated cases. In future studies, a sensibility analysis on the terms that compose this factor can lead to a better understanding of how fluctuations of temperature correlate with the turbulence-radiation interaction phenomenon.
259

Simulação numérica de tornados usando o método dos elementos finitos

Aguirre, Miguel Angel January 2017 (has links)
O presente trabalho tem como objetivo estudar escoamentos de tornados e sua ação sobre corpos imersos empregando ferramentas numéricas da Engenharia do Vento Computacional (EVC). Os tornados constituem-se atualmente em uma das causas de desastres naturais no Brasil, especialmente nas regiões sul e sudeste do país, como também em alguns países vizinhos. Os efeitos gerados são geralmente localizados e de curta duração, podendo ser devastadores dependendo da escala do tornado. Tais características dificultam a realização de estudos detalhados a partir de eventos reais, o que levou ao desenvolvimento de modelos experimentais e numéricos. A abordagem numérica é utilizada neste trabalho para a simulação de tornados, a qual se baseia nas equações de Navier-Stokes e na equação de conservação de massa, considerando a hipótese de pseudo-compressibilidade e condições isotérmicas. Para escoamentos com turbulência utiliza-se a Simulação Direta de Grandes Escalas com o modelo clássico de Smagorinsky para as escalas inferiores à resolução da malha (Large Eddy Simulation ou LES em inglês). A discretização das equações fundamentais do escoamento se realiza com um esquema explícito de dois passos de Taylor-Galerkin, onde o Método dos Elementos Finitos é empregado na discretização espacial utilizando-se o elemento hexaédrico trilinear isoparamétrico com um ponto de integração e controle de modos espúrios Na presença de corpos imersos que se movem para simular os deslocamentos dos tornados, o escoamento é descrito cinematicamente através de uma formulação Arbitrária Lagrangeana-Euleriana (ALE) que inclui um esquema de movimento de malha. Tornados são reproduzidos através da simulação numérica de dispositivos experimentais e do Modelo de Vórtice Combinado de Rankine (RCVM). Exemplos clássicos da Dinâmica dos Fluidos Computacional são apresentados inicialmente para a verificação das ferramentas numéricas implementadas. Finalmente, problemas envolvendo tornados móveis e estacionários são analisados, incluindo sua ação sobre corpos imersos. Nos modelos baseados em experimentos, a variação da relação de redemoinho determinou os diferentes padrões de escoamento observados no laboratório. Nos exemplos de modelo de vórtice, quando o tornado impactou o corpo imerso gerou picos de forças em todas as direções e, após a passar pelo mesmo, produziu uma alteração significativa na estrutura do vórtice. / Analyses of tornado flows and its action on immersed bodies using numerical tools of Computational Wind Engineering (CWE) are the main aims of the present work. Tornadoes are currently one of the causes of natural disasters in Brazil, occurring more frequently in the southern and southeastern regions of the country, as well as in some neighboring countries. Effects are usually localized, presenting a short time interval, which can be devastating depending on the scale of the tornado. These characteristics difficult to carry out detailed studies based on real events, leading to the development of experimental and numerical models. The numerical approach is used in this work for the simulation of tornadoes, which is based on the Navier-Stokes equations and the mass conservation equation, considering the hypothesis of pseudo-compressibility and isothermal conditions. For turbulent flows, Large Eddy Simulation (LES) is used with the classical Smagorinsky model for sub-grid scales Discretization is performed the explicit two-step Taylor-Galerkin scheme, where the Finite Element Method is used in spatial discretization using isoparametric trilinear hexahedral elements with one-point quadrature and hourglass control. In the presence of immersed bodies that are moving in order to simulate translating tornadoes, the flow is kinematically described through a Lagrangian-Eulerian Arbitrary (ALE) formulation, which includes a mesh motion scheme. Tornadoes are reproduced using numerical simulation of experimental devices and the Rankine Combined Vortex Model (RCVM). Classical examples of Computational Fluid Dynamics are presented initially for the verification of the numerical tools implemented here. Finally, problems involving moving and stationary tornadoes are analyzed, including their actions on immersed bodies. For models based on experiments, the variation of the swirl ratio determined the different flow patterns observed in the laboratory. In the vortex model examples, when the tornado impacted on the immersed body, peaks of forces were generated in all directions and, after passing over it, a significant change in the structure of the vortex was produced.
260

Étude analytique et numérique du bruit de combustion indirect généré par l'injection d'ondes entropiques dans une tuyère / Analytical and Numerical study of indirect combustion noise generated by entropy disturbances in nozzle flows

Zheng, Jun 21 September 2016 (has links)
Avec la réduction du bruit de jet et de soufflante dans les moteurs aéronautiques modernes, la contribution relative du bruit de combustion (BC) a augmenté de manière significative au cours des dernières décennies. Deux mécanismes ont été identifiés comme étant du BC dans les années 70 : le bruit de combustion direct (BCD) et le bruit de combustion indirect (BCI). Le coeurde la thèse est axé sur le BCI avec le développement d’un modèle semi-analytique 2D axisymétrique prenant en compte la distorsion des ondes entropiques afin de prédire le BCI dans des écoulements de tuyère. L’état de l’art réalisé dans le premier chapitre met en évidence la nécessité d’améliorer la prédiction du BCI des modèles 1D en introduisant la distorsion radiale des ondes entropiques dans la tuyère. Le second chapitre du manuscrit détaille les outils disponibles à l’ONERA pour l’étude du BCI. Le modèle 2D est développé dans le troisième chapitre où les équations d’Euler sont réécritesen 2D pour la partie entropique et en 1D pour les perturbations acoustiques. Le quatrième chapitre décrit les simulations numériques réalisées pendant la thèse sur la configuration retenue (la tuyère DISCERN) : un calcul RANS et deux simulations des grandes échelles (SGE) sont effectués respectivementpour l’utilisation et la validation du modèle 2D. Dans le dernier chapitre, l’application du nouveau modèle utilisant le champ moyen RANS est accompli, les résultats sont comparés au modèle 1D et validés par confrontation avec les prédictions SGE. / Due to the reduction of jet mixing noise and fan noise in modern aero engines, the relative contribution of combustion noise (CN) has significantly increased over the last few decades. Two mechanisms have been identified as CN in the 70’s: direct combustion noise (DCN) and indirect combustion noise (ICN). A focus is made on the ICN in this thesis with the development of a twodimensionalaxisymmetric semi-analytical model taking into account the distortion of the entropy waves in order to predict the ICN for nozzle flows. The state of the art performed in the first chapter highlights the necessity to improve the prediction of ICN of 1D models by introducing the radial distortion of the entropy waves inside the nozzle. The second chapter of the manuscript details the ONERA’s tools for studying ICN. The 2D model is developed in the third chapter where the Euler equations are rewritten in 2D formfor the entropic part while acoustic perturbations are considered to be 1D. The fourth chapter describes the numerical computations performed during the thesis onthe retained configuration (the DISCERN nozzle): a RANS and two large eddy simulations (LES) are carried out respectively for the use and the validation of the 2D model. In the last chapter, the application of the new model using the RANS meanfield is performed, the results are compared tothe 1D model and validated by confrontation with the LES predictions.

Page generated in 0.0821 seconds