• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 84
  • 42
  • 16
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 418
  • 418
  • 399
  • 121
  • 110
  • 91
  • 90
  • 86
  • 84
  • 82
  • 76
  • 70
  • 64
  • 61
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

On the Advancement of Phenomenological and Mechanistic Descriptions of Unsteadiness in Shock-Wave/Turbulent-Boundary-Layer Interactions

Adler, Michael C. 29 August 2019 (has links)
No description available.
392

Three-dimensional Effects on Unsteady Dynamics and Turbulent Transport Mechanisms of an Impinging Shock Wave/Boundary-layer Interaction

Vyas, Manan A. January 2021 (has links)
No description available.
393

Large Eddy Simulation Based Turbulent Flow-induced Vibration of Fully Developed Pipe Flow

Pittard, Matthew Thurlow 08 October 2003 (has links) (PDF)
Flow-induced vibration caused by fully developed pipe flow has been recognized, but not fully investigated under turbulent conditions. This thesis focuses on the development of a numerical Fluid-Structure Interaction (FSI) model that will help define the relationship between pipe wall vibration and the physical characteristics of turbulent flow. Commercial FSI software packages are based on Reynolds Averaged Navier-Stokes (RANS) fluid models, which do not compute the instantaneous fluctuations in turbulent flow. This thesis presents an FSI approach based on Large Eddy Simulation (LES) flow models, which do compute the instantaneous fluctuations in turbulent flow. The results based on the LES models indicate that these fluctuations contribute to the pipe vibration. It is shown that there is a near quadratic relationship between the standard deviation of the pressure field on the pipe wall and the flow rate. It is also shown that a strong relationship between pipe vibration and flow rate exists. This research has a direct impact on the geothermal, nuclear, and other fluid transport industries.
394

Computational Modeling of Ignition and Premixed Flame Propagation Initiated by a Pre-chamber Turbulent Jet

Utsav Jain (17583528) 09 December 2023 (has links)
<p dir="ltr">Addressing the pressing need for reduced carbon emissions, Turbulent Jet Ignition (TJI) emerges as a promising technology for ultra-lean combustion, offering enhanced thermal efficiencies and minimized cyclic variability in spark-ignited engines. To facilitate rapid testing and integration of this technology, a robust computational modeling framework is crucial. This study delves into the predictive capabilities of computational models for main-chamber ignition and premixed flame propagation using a single-cycle TJI rig measured by Biswas et al. (Applied Thermal Engineering, volume 106, 2016). Employing an open-source compressible flow simulation solver with Large Eddy Simulation (LES) for turbulence modeling, the investigation integrates the conventional Laminar Finite Rate Chemistry (LFRC) model alongside the transported Probability Density Method (PDF) for turbulence-chemistry interaction. A fully-consistent Eulerian Monte-Carlo Fields (EMCF) method is utilized to approximate the transported PDF, while Interaction by Exchange with Mean is employed to close micro-mixing terms in stochastic differential equations. A reduced chemical reaction mechanism with 21 species and 84 reactions (DRM-19) is used for solving chemical kinetics, and a double Gaussian energy deposition model is used to approximate the spark ignition in the pre-chamber. An unstructured O-grid mesh with 0.3 million cells in the pre-chamber and 1 million cells in the main chamber is employed. Results are divided into two phases: pre-chamber initialization and full TJI simulations. Validation of the predicted pre-chamber flame propagation and the lean ignition in the main-chamber is carried out by using available experimental data. Under quiescent conditions, both the LFRC and transported PDF methods largely underestimate the flame speed and subsequent pressure growth in the pre-chamber. A linear momentum forcing technique is applied to investigate the impact of initial turbulence in the pre-chamber, demonstrating a notable influence on flame propagation. Fine-tuning of the forcing coefficient reproduces the sudden pressure growth observed in the experiment. The experimentally validated pre-chamber simulation serves as the initial condition for the full TJI simulations. It is found that the LFRC model fails to predict lean-ignition in the main-chamber, resulting in a misfiring event. Incorporation of turbulence-chemistry interaction using the transported PDF method substantially improves the prediction of the ignition event in the main-chamber, achieving fair qualitative agreement and quantitative validation of combustion parameters within 10% of the reported experimental data. The rich simulation results consisting of a full set of statistical description of the thermo-chemical states enable us to gain deep insights into the ignition mechanisms in the main chamber, which is limited when done experimentally. A novel dual ignition phenomenon is revealed in the TJI rig for the first time. Initially, a primary ignition kernel is formed at a downstream location which eventually detaches from the main jet. As the jet momentum decreases, a secondary ignition event follows, this time at a more upstream location which eventually combines with the primary ignition kernel to form a single connected flame front. Investigation of these ignition sequences in chemical composition space reveal distinct differences between the two. The primary ignition event in the main-chamber is followed by a large concentration of active radicals from the pre-chamber jet, accelerating the chain-branching steps, characterizing what has been referred to as flame ignition. In contrast, the secondary ignition occurs in the absence of active radicals in the pre-chamber jet, hence characterized as jet ignition. Further analysis of the effect of pre-chamber jet characteristics on lean ignition in the main-chamber is conducted by setting up cases with different initial pressure ratios (p<sub>r</sub><sup>o</sup>) between the two chambers, a non-dimensional parameter, ranging from 1.2 to 3.2. As the initial pressure ratio increases, jet momentum increases, with dual ignition observed in cases above p<sub>r</sub><sup>o</sup>= 2.2. Case with p<sub>r</sub><sup>o</sup>= 3.2 lead to misfiring. The effect of ignition sequence on global combustion characteristics of TJI is analyzed. Dual ignition events lead to non-monotonicity in combustion characteristics such as global reaction progress variable, flame penetration, and global heat release rate. In dual ignition events, although the rate of fuel consumption and global heat release rate is initially lower, the secondary ignition leads to a sudden increase in flame surface area, resulting in a sudden jump and promoting the overall performance of the TJI system.</p>
395

On the Influence of Inlet Geometry on Turbocharger Compressor Noise

Roig Villanueva, Ferran 03 March 2023 (has links)
[ES] En la sociedad actual hay cada vez una mayor conciencia de la importancia del calentamiento global. Esta preocupación se ve reflejada por los poderes legislativos de las naciones occidentales en normativas de emisiones cada vez más restrictivas. En este contexto, la industria automovilísitca se ha visto fuertemente incentivada a desarrollar motores térmicos más eficientes e incluso a explorar nuevas soluciones propulsivas, como el motor eléctrico. Para mejorar la eficiencia energética de los motores de combustión interna alternativos se emplea la reducción de los motores. Esto ha obligado a los compresores a trabajar en condiciones, en las que su emisión acústica llega a ser problemática. La revisión bibliográfica llevada a cabo en esta tesis muestra que sigue sin haber consenso acerca de la causa de ciertas componentes del espectro, como los ruidos de banda ancha conocidos cono whoosh y Tip Clearance Noise (TCN). La influencia en el ruido de la geometría de los conductos de entrada al compresor está asimismo poco explorada. Esta tesis presenta una metodología computacional de análisis del campo de flujo que permite la identificación de las estructuras de flujo responsables de las componentes espectrales más relevantes, así como el análisis de la influencia en éstas de las condiciones de operación y las geometrías de entrada. El campo de presión en el interior del compresor se analiza mediante técnicas de descomposición modal. Éstas permiten identificar patrones espaciales y asociarlos a las frecuencias del espectro medido de forma objetiva. Posteriormente se identifica las estructuras de flujo correspondientes a dichos patrones, y su evolución con las condiciones de operación y la geometría de entrada. Mediante la aplicación de la metodología descrita se describe los diferentes mecanismos de generación de los ruidos tonales en el inductor y el borde de fuga del rotor. En cuanto a los ruidos de banda ancha mencionados, los vórtices encontrados aguas arriba del inductor generan oscilaciones en la banda de frecuencias del whoosh, y favorecen el desprendimiento rotativo, que contribuye a dicho ruido en el difusor y la voluta. La carga no estacionaria sobre la superficie de los álabes es identificada como un importante contribuidor al ruido TCN. La influencia de las condiciones de operación en la generación de ruido se manifiesta a través de la intensidad del flujo inverso en el inductor. La aparición de este flujo inverso es característica de los puntos de bajo gasto másico, aunque se sigue apreciando, con menor intensidad, en algunos puntos de alto gasto. El flujo inverso inhibe las condiciones sónicas en el borde de ataque, debilitando el ruido tonal a la frecuencia de paso de álabe. En cuanto a los ruidos de banda ancha, el flujo inverso es la causa de los vórtices en el inductor que producen el ruido whoosh y el despegue rotativo, y además promueve la carga no estacionaria de los álabes, asociada con el TCN. El papel de la geometría del conducto de entrada en el ruido depende de su grado de interacción con los vórtices del inductor. En aquellas geometrías que limitan la extensión aguas arriba de los vórtices del inductor, como los codos con radio de curvatura reducido, tiene lugar una interacción intensa de los vórtices con las paredes del conducto y con otros vórtices. Ello está correlacionado con un aumento del ruido whoosh. Los conductos de entrada que están suficientemente separados de los vórtices, intervienen en el ruido solamente a través de sus propiedades de transmisión de las oscilaciones acústicas generadas en el rotor y el difusor. Al final de la tesis se reflexiona sobre las contribuciones de los resultados expuestos al estado del arte de la investigación en el ruido de compresores. Además, se propone nuevas líneas de investigación para extender la metodología presentada, y completar el conjunto de condiciones de funcionamiento y geometrías de entrada analizadas en este trabajo. / [CA] En la societat actual hi ha cada vegada una major consciència de la importància del calfament global. Aquesta preocupació es veu reflectida pels poders legislatius de les nacions occidentals en normatives d'emissions cada vegada més restrictives. En aquest context, la indústria de l'automòbil s'ha vist fortament incentivada a desenvolupar motors tèrmics més eficients i fins i tot a explorar noves solucions propulsives, com el motor elèctric. La tendència adoptada per a millorar l'eficiència energètica dels motors de combustió interna alternatius és la reducció de la grandària dels motors. Això ha obligat els compressors a treballar en condicions més extremes, en les quals la seua emissió acústica arriba a ser problemàtica. La revisió bibliogràfica duta a terme en aquesta tesi mostra que segueix sense haver-hi consens sobre la causa d'unes certes components de l'espectre, com els sorolls de banda ampla coneguts con whoosh i Tip Clearance Noise (TCN). La influència en el soroll de la geometria dels conductes d'entrada al compressor està així mateix poc explorada. Aquesta tesi presenta una metodologia computacional d'anàlisi del camp de flux que permet la identificació de les estructures de flux responsables de les components espectrals més rellevants, així com l'anàlisi de la influència en aquestes de les condicions d'operació i les geometries d'entrada. El camp de pressió a l'interior del compressor s'analitza mitjançant tècniques de descomposició modal. Aquestes permeten identificar patrons espacials i associar-los a les freqüències de l'espectre mesurat de manera objectiva. Posteriorment s'identifica les estructures de flux corresponents a aquests patrons, i la seua evolució amb les condicions d'operació i la geometria d'entrada. Mitjançant l'aplicació de la metodologia descrita es descriu els diferents mecanismes de generació dels sorolls tonals en l'inductor i la vora de fugida del rotor. Quant als sorolls de banda ampla esmentats, els vòrtexs trobats aigües amunt de l'inductor generen oscil·lacions en la banda de freqüències del whoosh, i afavoreixen el despreniment rotatiu, que contribueix a aquest soroll en el difusor i la voluta. La càrrega no estacionària sobre la superfície dels àleps és identificada com un important contribuïdor al soroll TCN. La influència de les condicions d'operació en la generació de soroll es manifesta a través de la intensitat del flux invers en l'inductor. L'aparició d'aquest flux invers és característica dels punts de baixa despesa màssica, encara que es continua apreciant, amb menor intensitat, en alguns punts d'alta despesa. El flux invers inhibeix les condicions sòniques en la vora d'atac, afeblint el soroll tonal a la freqüència de pas d'àlep. Quant als sorolls de banda ampla, el flux invers és la causa dels vòrtexs en l'inductor que produeixen el soroll whoosh i el despreniment rotatiu, i a més promou la càrrega no estacionària dels àleps, associada amb el TCN. El paper de la geometria del conducte d'entrada en el soroll depén del seu grau d'interacció amb els vòrtexs de l'inductor. En aquelles geometries que limiten l'extensió aigües amunt dels vòrtexs de l'inductor, com els colzes amb radi de curvatura reduït, té lloc una interacció intensa dels vòrtexs amb les parets del conducte i amb altres vòrtexs. Això està correlacionat amb un augment del soroll whoosh. Els conductes d'entrada que estan prou separats dels vòrtexs, intervenen en el soroll solament a través de les seues propietats de transmissió de les oscil·lacions acústiques generades en el rotor i el difusor. Al final de la tesi es reflexiona sobre les contribucions dels resultats exposats a l'estat de l'art de la investigació en el soroll de compressors. A més, es proposa noves línies d'investigació per a estendre la metodologia presentada, i completar el conjunt de condicions de funcionament i geometries d'entrada analitzades en aquest treball. / [EN] In today's society, there is a growing awareness of the importance of global warming. This concern is reflected by the legislative powers of Western nations in increasingly restrictive emissions regulations. In this context, the automotive industry has been strongly encouraged to develop more efficient thermal engines and even to explore new propulsion solutions, such as the electric motor. The trend adopted to improve the energy efficiency of reciprocating internal combustion engines is the reduction of engine size. This has forced compressors to work in more extreme conditions, where their acoustic emission becomes troublesome. The literature review carried out in this thesis shows that in the last two decades, there has been a great boom of research in the acoustics of radial turbocharger compressors. Despite the progress made, there is still no consensus about the cause of specific spectrum components, such as the broadband noises known as whoosh and Tip Clearance Noise (TCN). The influence of compressor inlet duct geometry on noise is also scarcely explored. This thesis presents a computational methodology of flow field analysis that allows the identification of the flow structures responsible for the most relevant spectral components and the analysis of the influence of operating conditions and inlet geometries on them. The pressure field inside the compressor is analyzed through modal decomposition techniques. These allow identifying spatial patterns and associating them to the frequencies of the measured spectrum in an objective manner. Subsequently, the flow structures corresponding to these patterns are identified, and their evolution with the operating conditions and the inlet geometry is analyzed. Through the application of the described methodology, the different mechanisms of generation of the tonal noises in the inducer and the impeller trailing edge are identified. While the former is related to the sonic conditions at the leading edge, the latter is excited by the asymmetric pressure field in the diffuser. As for the aforementioned broadband noises, the vortices encountered upstream of the inducer generate oscillations in the whoosh frequency band and favor rotating stall, contributing to such noise in the diffuser and volute. Unsteady blade surface loading is identified as an important contributor to TCN noise. The influence of operating conditions on noise generation manifests through the intensity of the backflow in the inducer. The occurrence of backflow is characteristic of low mass flow points, although it is also found, with less intensity, at some higher mass flow points. The backflow inhibits the sonic conditions at the leading edge, weakening the tonal noise at the blade passing frequency. As for broadband noise, reverse flow is the cause of vortices in the inducer that produce whoosh noise and rotating stall. It also promotes the unsteady blade loading associated with TCN. The role of the inlet duct geometry in the noise depends on its degree of interaction with the inducer vortices. In geometries that limit the upstream extent of these vortices, such as low curvature radii elbows, intense interaction of the vortices with the duct walls and other vortices occurs. This is correlated with an increase in whoosh noise. Inlet ducts that are sufficiently separated from the vortices only affect noise through their transmission properties regarding acoustic oscillations generated in the impeller and diffuser. At the end of the thesis, reflections are offered on the contributions of the results to the current knowledge on compressor noise. In addition, new lines of research are proposed to extend the methodology presented and to complete the set of operating conditions and inlet geometries analyzed in this work. / Roig Villanueva, F. (2023). On the Influence of Inlet Geometry on Turbocharger Compressor Noise [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192264
396

Analyse de la modélisation turbulente en écoulements tourbillonnaires / Turbulent modelling analysis on rotating flows

Monier, Jean-François 02 July 2018 (has links)
L'objectif de la présente étude est d'analyser la modélisation de la turbulence de simulations en moyenne de Reynolds (RANS) dans le cadre d'écoulements de type turbomachines, en utilisant des simulations aux grandes échelles (SGE) comme référence. L'étude porte sur deux cas test: un décollement de coin dans une grille d'aubes rectiligne, et un écoulement de jeu pour un aubage isolé dans un jet. Deux lois de comportement, la loi de comportement de Boussinesq et la loi de comportement quadratique (quadratic constitutive relation ou QCR), sont analysées, avec deux versions du modèle de turbulence k-omega de Wilcox. Les lois de comportement étudiées reposent sur deux hypothèses: une hypothèse d'alignement entre le tenseur de Reynolds et un tenseur construit à partir de l'écoulement moyen, et une hypothèse sur la viscosité turbulente. L'hypothèse d'alignement est étudiée à partir de la SGE, pour laquelle les deux tenseurs sont indépendamment connus, en utilisant un indicateur construit sur le produit scalaire des tenseurs. Les résultats sont présentés sous forme d'une fonction de répartition de la valeur de l'indicateur pour le domaine complet, puis pour trois sous-domaines d'intérêt: l'entrée, une région où l'écoulement interagit fortement avec les parois, et une région où l'écoulement est fortement tourbillonnaire. L'hypothèse d'alignement n'est que rarement valide pour la loi de comportement de Boussinesq. Pour la QCR, les résultats sont meilleurs en entrée, comparé à la loi de Boussinesq. Il ne sont cependant pas meilleurs pour les régions où l'écoulement est plus tourbillonnaire. Une amélioration de la loi de comportement est nécessaire pour pouvoir faire progresser la modélisation turbulente en RANS. En revanche, l'utilisation de l'énergie cinétique turbulente et du taux de dissipation spécifique semble correcte pour estimer la valeur de la viscosité turbulente. L'analyse de la modélisation de l'équation d'énergie cinétique turbulente (ECT) est réalisée au travers d'une comparaison terme à terme avec l'équation d'ECT résolue par la SGE. Les résultats SGE présentent une turbulence qui n'est pas à l'équilibre : la production et la dissipation ne sont pas superposées, et le terme de transport est important. Pour le RANS, la turbulence est à l'équilibre : la production et la dissipation sont superposées, et le terme de transport est de faible intensité. Un modèle de turbulence qui prend en compte le déséquilibre est nécessaire pour améliorer ce point. En dernier lieu, une nouvelle formulation hybride RANS/SGE est proposée, fondée sur la distance à la paroi en unités de paroi. La formulation est validée dans un canal bi-périodique et un premier essai est réalisé sur le cas de décollement de coin, mais d'autres analyses sont nécessaires avant que cette formulation ne soit fonctionnelle. / The present study aims at analysing turbulence modelling in Reynolds-averaged Navier-Stokes (RANS) simulations, in the context of turbomachinery flows, using large-eddy simulations (LES) as references. Two test cases are considered: a corner separation (CS) flow in a linear compressor cascade, and a tip-leakage (TL) flow of a single blade in a jet. Two constitutive relations, the Boussinesq constitutive relation and the quadratic constitutive relation (QCR), are investigated, with two versions of Wilcox's $k-\omega$ turbulence model. The studied constitutive relations rely on two hypotheses: an alignment hypothesis between the Reynolds stress tensor and a mean flow tensor, and an hypothesis on the turbulent viscosity. The alignment hypothesis is investigated using LES, where both the tensors are known independently, with an indicator built on the inner product of the tensors. The results are presented as probability density functions of the indicator value for the entire domain first, and then for three specific areas of interest: the inlet area, similar to a boundary-layer flow, an area of strong interaction between the flow and the walls (CS: passage area, TL: tip clearance) and an area of highly vortical flow (CS: separation wake, TL: tip-leakage vortex). The alignment hypothesis is rarely verified in any area for the Boussinesq constitutive relation. For the QCR, the results are improved for the inlet areas compared to the Boussinesq constitutive relation, but no significant improvement is found in the highly vortical regions. An improvement of the constitutive relation is needed in order to improve the RANS turbulence modelling. In contrast, the use of the turbulent kinetic energy and the specific dissipation rate appears quite correct to estimate the turbulent viscosity. The modelling of the RANS turbulent kinetic energy (TKE) budget equation is investigated through a term to term comparison with the resolved LES TKE budget equation. The LES presents a turbulence that is not at equilibrium, with the production and the dissipation not superimposed, and an important amount of transport. This differs from the RANS models, at equilibrium: the production and the dissipation are superimposed, with a small amount of transport. The development of a non-equilibrium turbulence model for RANS simulations could improve this aspect of turbulence modelling. Finally, a new hybrid RANS-LES formulation, based on the wall distance in wall units, is also proposed. It is validated on a bi-periodical channel flow, and a first attempt is made on the corner separation case, but further investigations are still needed for the model to be fully operational.
397

Modal analysis and flow control for drag reduction on a Sport Utility Vehicle / Choix de méthode d'optimisation appliquée au contrôle d'écoulement en aérodynamique externe pour réduire les pertes aérodynamiques sur maquette de véhicule type SUV

Edwige, Stéphie 14 March 2019 (has links)
L’industrie automobile fournie de plus en plus d’effort pour optimiser l’aérodynamique externe des véhicules afin de réduire son empreinte écologique. Dans ce cadre, l’objectif de ce projet est d’examiner les structures tourbillonnaires responsables de la dégradation de traînée et de proposer une solution de contrôle actif permettant d’améliorer l’efficacité aérodynamique d’un véhicule SUV. Après une étude expérimentale de la maquette POSUV échelle réduite, une analyse modale croisée permet d’identifier les structures périodiques corrélées de l’écoulement qui pilotent la dépression sur le hayon. Une solution de contrôle optimale par jets pulsés sur le parechoc arrière, est obtenue avec un algorithme génétique. Celle-ci permet de réduire la dépression du hayon de 20% et l’analyse croisée des résultats instationnaires avec contrôle montre un changement significatif de la distribution spectrale. Après deux études préliminaires sur la rampe inclinée à 25° et sur le Corps d’Ahmed à 47°, la simulation de POSUV à partir d’un solveur LES, en éléments finis, est validé par rapport aux résultats expérimentaux. L’approfondissement des résultats 3D permet de comprendre les pertes aérodynamiques. La simulation de l’écoulement contrôlé permet également d’identifier les mécanismes du contrôle d’écoulements. / The automotive industry dedicates a lot of effort to improve the aerodynamical performances of road vehicles in order to reduce its carbon footprint. In this context, the target of the present work is to analyze the origin of aerodynamic losses on a reduced scale generic Sport Utility Vehicle and to achieve a drag reduction using an active flow control strategy. After an experimental characterization of the flow past the POSUV, a cross-modal DMD analysis is used to identify the correlated periodical features responsible for the tailgate pressure loss. Thanks to a genetic algorithm procedure, 20% gain on the tailgate pressure is obtained with optimal pulsed blowing jets on the rear bumper. The same cross-modal methodology allows to improve our understanding of the actuation mechanism. After a preliminary study of the 25° inclined ramp and of the Ahmed Body computations, the numerical simulation of the POSUV is corroborated with experiments using the cross-modal method. Deeper investigations on the three-dimensional flow characteristics explain more accurately the wake flow behavior. Finally, the controlled flow simulations propose additional insights on the actuation mechanisms allowing to reduce the aerodynamic losses.
398

LES/PDF approach for turbulent reacting flows

Donde, Pratik Prakash 15 February 2013 (has links)
The probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of turbulent reacting flows. In this approach, the joint-PDF of all reacting scalars is estimated by solving a PDF transport equation, thus providing detailed information about small-scale correlations between these quantities. The objective of this work is to further develop the LES/PDF approach for studying flame stabilization in supersonic combustors, and for soot modeling in turbulent flames. Supersonic combustors are characterized by strong shock-turbulence interactions which preclude the application of conventional Lagrangian stochastic methods for solving the PDF transport equation. A viable alternative is provided by quadrature based methods which are deterministic and Eulerian. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a new approach called semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach. For soot modeling in turbulent flows, an LES/PDF approach is integrated with detailed models for soot formation and growth. The PDF approach directly evolves the joint statistics of the gas-phase scalars and a set of moments of the soot number density function. This LES/PDF approach is then used to simulate a turbulent natural gas flame. A Lagrangian method formulated in cylindrical coordinates solves the high dimensional PDF transport equation and is coupled to an Eulerian LES solver. The LES/PDF simulations show that soot formation is highly intermittent and is always restricted to the fuel-rich region of the flow. The PDF of soot moments has a wide spread leading to a large subfilter variance. Further, the conditional statistics of soot moments conditioned on mixture fraction and reaction progress variable show strong correlation between the gas phase composition and soot moments. / text
399

Experimental investigation of multi-component jets issuing from model pipeline geometries with application to hydrogen safety

Soleimani nia, Majid 21 December 2018 (has links)
Development of modern safety standards for hydrogen storage infrastructure requires fundamental insight into the physics of buoyant gas dispersion into ambient air. Also, from a practical engineering stand-point, flow patterns and dispersion of gas originating from orifices in the side wall of circular pipe or storage tank need to be studied. In this thesis, novel configurations were considered to investigate the evolution of turbulent jets issuing from realistic pipeline geometries. First, the effect of jet densities and Reynolds numbers on vertical jets were investigated, as they emerged from the side wall of a circular pipe, through a round orifice. The resulting jet flow was thus issued through a curved surface from a source whose original velocity components were nearly perpendicular to the direction of the ensuing jets. Particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques were employed simultaneously to provide instantaneous and time-averaged flow fields of velocity and concentration. The realistic flow arrangement resulted in an asymmetric flow pattern and a significant deflection from the vertical axis of jets. The deflection was influenced by buoyancy, where heavier gases deflected more than lighter gases. These realistic jets experienced faster velocity decay, and asymmetric jet spreading compared to round jets due to significant turbulent mixing in their near field. In addition to that, horizontal multi-component jets issuing from a round orifice on the side wall of a circular tube were also investigated experimentally by the means of simultaneous velocity and concentration measurements. A range of Reynolds numbers and gas densities were considered to study the effects of buoyancy and asymmetry on the resulting flow structure. The realistic pipeline jets were always exhibited an asymmetry structure and found to deflect about the jet's streamwise axis in the near field. In the far field, the buoyancy dominated much closer to the orifice than expected in the axisymmetric round jet due to the realistic leak geometry along with the pipeline orientation considered in this study. In general, significant differences were found between the centreline trajectory, spreading rate, and velocity decay of conventional horizontal round axisymmetric jets issuing through flat plates and the pipeline leak-representative jets considered in the present study. Finally, the dispersion of turbulent multi-component jets issuing from high-aspect-ratio slots on the side wall of a circular tube were studies experimentally by employing simultaneous PIV and PLIF techniques. Two transversal & longitudinal oblong geometries in respect to the longitudinal axes of the tube , and with an aspect ratio of 10 were considered in this study. Both horizontal and vertical orientations along with broad range of Reynolds numbers and gas densities were considered to investigate the effects of buoyancy and asymmetry on the resulting flow structure. The ensuing jets were found to deflect along the jet streamwise axis, once more, due to the realistic pipeline leak-representative configuration. It was also found that increases in aspect ratio of these realistic jets caused a reduction in the angle of deflection, jet centreline decay rates and the width growth on both velocity and scalar fields compared to their round jets counterparts, most notably in the far field. These findings indicate that conventional jets (those that are issuing through flat surfaces) assumptions are inadequate to predict gas concentration, entrainment rates and, consequently, the extent of the flammability envelope of realistic gas leaks. Thus, extreme caution is required when using conventional jet assumptions to describe the physics of a buoyant jet emitted from realistic geometries. / Graduate
400

A hybrid les / lagrangian fdf method on adaptive, block-structured mesh / Metodo híbrido LES / FDF Lagrangiana em malha adaptativa, bloco-estruturada

Ferreira, Vitor Maciel Vilela 09 April 2015 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Esta dissertação é parte de um amplo projeto de pesquisa, que visa ao desenvolvimento de uma plataforma computacional de dinâmica dos fluidos (CFD) capaz de simular a física de escoamentos que envolvem mistura de várias espécies químicas, com reação e combustão, utilizando um método hibrido Simulação de Grandes Escalas (LES) / Função Densidade Filtrada (FDF) Lagrangiana em malha adaptativa, bloco-estruturada. Uma vez que escoamentos com mistura proporcionam fenômenos que podem ser correlacionados com a combustão em escoamentos turbulentos, uma visão global da fenomenologia de mistura foi apresentada e escoamentos fechados, laminar e turbulento, que envolvem mistura de duas espécies químicas inicialmente segregadas foram simulados utilizando o código de desenvolvimento interno AMR3D e o código recentemente desenvolvido FDF Lagrangiana de composição. A primeira etapa deste trabalho consistiu na criação de um modelo computacional de partículas estocásticas em ambiente de processamento distribuído. Isto foi alcançado com a construção de um mapa Lagrangiano paralelo, que pode gerenciar diferentes tipos de elementos lagrangianos, incluindo partículas estocásticas, particulados, sensores e nós computacionais intrínsecos dos métodos Fronteira Imersa e Acompanhamento de Interface. O mapa conecta informações Lagrangianas com a plataforma Euleriana do código AMR3D, no qual equações de trans- porte são resolvidas. O método FDF Lagrangiana de composição realiza cálculos algébricos sobre partículas estocásticas e provê campos de composição estatisticamente equivalentes aos obtidos quando se utiliza o método de Diferenças Finitas para solução de equações diferenciais parciais; a técnica de Monte Carlo foi utilizada para resolver um sistema derivado de equações diferenciais estocásticas (SDE). Os resultados concordaram com os benchmarks, que são simulações baseadas em plataforma de Diferenças Finitas para solução de uma equação de transporte de composição filtrada. / This master thesis is part of a wide research project, which aims at developing a com- putational fluid dynamics (CFD) framework able to simulate the physics of multiple-species mixing flows, with chemical reaction and combustion, using a hybrid Large Eddy Simulation (LES) / Lagrangian Filtered Density Function (FDF) method on adaptive, block-structured mesh. Since mixing flows provide phenomena that may be correlated with combustion in turbulent flows, we expose an overview of mixing phenomenology and simulated enclosed, ini- tially segregated two-species mixing flows, at laminar and turbulent states, using the in-house built AMR3D and the developed Lagrangian composition FDF codes. The first step towards this objective consisted of building a computational model of notional particles transport on distributed processing environment. We achieved it constructing a parallel Lagrangian map, which can hold different types of Lagrangian elements, including notional particles, particu- lates, sensors and computational nodes intrinsic to Immersed Boundary and Front Tracking methods. The map connects Lagrangian information with the Eulerian framework of the AMR3D code, in which transport equations are solved. The Lagrangian composition FDF method performs algebraic calculations over an ensemble of notional particles and provides composition fields statistically equivalent to those obtained by Finite Differences numerical solution of partially differential equations (PDE); we applied the Monte Carlo technique to solve a derived system of stochastic differential equations (SDE). The results agreed with the benchmarks, which are simulations based on Finite Differences framework to solve a filtered composition transport equation. / Mestre em Engenharia Mecânica

Page generated in 0.0771 seconds