• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 58
  • 21
  • 11
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 214
  • 214
  • 39
  • 35
  • 32
  • 30
  • 23
  • 23
  • 21
  • 20
  • 20
  • 18
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the ability of cross-borehole electrical imaging to assist in the characterisation of hydrogeological properties at the field scale

Slater, Lee David January 1997 (has links)
No description available.
2

Image reconstruction and spectral expansion analysis in electrical impedance tomography

Zadehkoochak, Mohsen January 1991 (has links)
No description available.
3

Correlation between internal friction, electrical resistivity, and temper brittleness in steel

Kaddou, Abdul-Fattah Kaddouri, January 1958 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1958. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 88-94).
4

Seasonal Cycling in Electrical Resistivities at Ten Thin Permafrost Sites, Southern Yukon and Northern British Columbia

Miceli, Christina 26 October 2012 (has links)
Permanent electrode arrays were set up at ten monitoring sites from Whitehorse, Yukon, to Fort St. John, British Columbia, in order to gain a clearer perspective of the effectiveness of electrical resistivity tomography (ERT) monitoring over an annual cycle of freezing and thawing. This research forms part of a longer-term project that is attempting to use ERT to examine changes in permafrost resulting from climate change. Inter-site and intra-site variability were examined by installing and maintaining data-loggers to monitor active layer and shallow permafrost temperatures, air temperatures, and snow depths at each site from August 2010 – August 2011. Additional site information was collected on each ERT survey date, including frost table depths, snow depths, and vegetation heights. Based on nearby community records, the climate in the region has been warming by a rate of 0.3 to 0.5 °C per decade since 1970. The permafrost at all ten sites was characteristic of sporadic discontinuous and isolated patches permafrost zones, and is classified as Ecosystem-protected. Nine of the ten permafrost sites had permafrost that was thinner than the 14 or 7 m penetration depth of the ERT survey (three-layer system consisting of an active layer, permafrost, and sub-permafrost perennially unfrozen zone). The most predictable results were achieved at the two-layer system site (active layer overlying permafrost to the base of the profile) in each of its virtual resistivity boreholes, relative resistivity change comparisons, and mean near-surface apparent resistivity progressions. ERT is an effective method of delineating permafrost boundaries in thin permafrost environments and does show strength when monitoring areas of seasonally frozen ground. Repeat surveys at a site indicate seasonal changes in three-layer conditions, but not as predictably as those in a two-layer system. In order to receive the most accurate information regarding permafrost extent and thickness, it appears ideal to conduct ERT surveys annually, within the same month as the previous year’s survey.
5

The Effects of Lead Placement and Sample Shape in the Measurement of Electrical Resistivity

Stephens, Anthony E. 08 1900 (has links)
This thesis is a study of the effects of lead placement and sample shape in the measurement of electrical resistivity.
6

Characterizing soil erosion potential using electrical resistivity imaging

Karim, Md Zahidul January 1900 (has links)
Master of Science / Department of Civil Engineering / Stacey Tucker-Kulesza / The erosion rate, or erodibility, of soil depends on many soil characteristics including: plasticity, water content, grain size, percent clay, compaction, and shear strength. Many of these characteristics also influence soil in situ bulk electrical resistivity (ER) measurements. The objective of this study was to characterize soil erosion potential by correlating the in situ ER of soil with erodibility measured in the Kansas State University Erosion Function Apparatus (KSU-EFA). ER surveys were conducted at eleven bridge sites. Soil samples were also collected at each site with a drill rig from the surface to three meters using thin-walled Shelby tubes. Five samples were collected at each site, tested in the KSU-EFA, and classified according to the Unified Soil Classification System. Analysis showed that the rapid in situ data obtained from an ER survey can be used to categorize the level of erodibility. As such, ER surveys may be used to characterize the soils at future bridge sites or prioritize existing bridges for additional testing to measure the scour potential. Moreover, ER surveys may be used to determine which existing bridges should be closed or closely monitored for scour potential during a flood event. Analytical models to predict critical shear stress using ER and other soil parameters were constructed.
7

Durability evaluation of cement-based repair materials used for corrosion-damaged steel-reinforced concrete structures

Wang, Boyu 27 April 2018 (has links)
Concrete repair materials are being widely used to restore and extend the service life of structures. While most cement-based repair materials are compatible with concrete structures, their durability properties do not attract much attention which it deserves from researchers. Since repair materials can deteriorate like conventional concrete, the search for reliable, long-lasting concrete repair materials is becoming more intensive. Amongst other factors, concrete permeability and chloride diffusivity within concrete are believed to play a major role in determining the durability and success of the repair. These two parameters determine the penetration rate of aggressive substances into concrete and how fast degradation could take place. A number of test methods have been proposed to study these two factors, and the commonly used test methods are water penetration, surface/bulk electrical resistivity, rapid chloride permeability (RCP), and half-cell potential. However, the relationship between each durability test method and their correlation with compressive strength measurement have not been fully understood. So, in this study, we aim for using multiple testing techniques, destructive and non-destructive, to evaluate the durability of concrete repair materials as well as correlating different test methods. Three types of commercially available cement-based materials are tested and evaluated, and results have indicated that cementitious concrete mortar (termed as Mix M) amongst others has the best durability performance which means low water permeability, high resistivity, and compressive strength. Whereas, the flexural performance of Mix M still needs some improvement in terms of flexural strength and flexural toughness. For various durability testing methods, surface resistivity is found to have a strong linear relation and a polynomial relation to bulk resistivity and water permeability respectively. No relationship is established between concrete resistivity and compressive strength, though high-strength concrete tends to have a high resistivity in our study. RCP test results do not correlate well with resistivity measurements, which requires further study to overcome its heating and binding effect when measurements are being taken. Half-cell potential method is used for validating test results but it reveals no difference for materials with different permeability and resistivity. A model is proposed to counteract temperature’s effect while calculating the coefficient of diffusion, which indicates the concrete to resist chloride diffusion. It is found that this model can shift the RCP measurement slightly closer to its theoretical prediction but the difference between them is still large. Therefore, further research is required for acquiring more raw data from RCP measurements as the regression analysis input. In addition, a more comprehensive model that involves more correction factors for binding effects, etc., is also needed. / Graduate / 2020-04-30
8

Seasonal Cycling in Electrical Resistivities at Ten Thin Permafrost Sites, Southern Yukon and Northern British Columbia

Miceli, Christina 26 October 2012 (has links)
Permanent electrode arrays were set up at ten monitoring sites from Whitehorse, Yukon, to Fort St. John, British Columbia, in order to gain a clearer perspective of the effectiveness of electrical resistivity tomography (ERT) monitoring over an annual cycle of freezing and thawing. This research forms part of a longer-term project that is attempting to use ERT to examine changes in permafrost resulting from climate change. Inter-site and intra-site variability were examined by installing and maintaining data-loggers to monitor active layer and shallow permafrost temperatures, air temperatures, and snow depths at each site from August 2010 – August 2011. Additional site information was collected on each ERT survey date, including frost table depths, snow depths, and vegetation heights. Based on nearby community records, the climate in the region has been warming by a rate of 0.3 to 0.5 °C per decade since 1970. The permafrost at all ten sites was characteristic of sporadic discontinuous and isolated patches permafrost zones, and is classified as Ecosystem-protected. Nine of the ten permafrost sites had permafrost that was thinner than the 14 or 7 m penetration depth of the ERT survey (three-layer system consisting of an active layer, permafrost, and sub-permafrost perennially unfrozen zone). The most predictable results were achieved at the two-layer system site (active layer overlying permafrost to the base of the profile) in each of its virtual resistivity boreholes, relative resistivity change comparisons, and mean near-surface apparent resistivity progressions. ERT is an effective method of delineating permafrost boundaries in thin permafrost environments and does show strength when monitoring areas of seasonally frozen ground. Repeat surveys at a site indicate seasonal changes in three-layer conditions, but not as predictably as those in a two-layer system. In order to receive the most accurate information regarding permafrost extent and thickness, it appears ideal to conduct ERT surveys annually, within the same month as the previous year’s survey.
9

Effect of additive Ag in TiSi2 thin films for phase transformation and mechanical behavior under nanoindentation

Sun, Shuo-yang 23 July 2010 (has links)
The C54 TiSi2 thin films are widely applied in semiconductor devices due to the low electric resistance and high thermal stability. Through the annealing processing in this study, the metastable C49 TiSi2 with an electric resistivity of 219.3 £g£[-cm transforms to the stable C54 TiSi2 phase at a higher annealing temperature, with a resistivity of 30.5 £g£[-cm. Hence the transformation temperature of C49 ¡÷ C54 is of great concern in metallization of gates and local interconnections. In this thesis, it is found that the oxygen content and Ag addition impose significant influence on the transformation temperature of C49 ¡÷ C54. The as-sputtered TiSi2 thin films are confirmed to be amorphous. After annealing at 600oC or 900oC, the silicides would transform to the metastable C49 TiSi2 or C54 TiSi2 phase, respectively. The current transformation temperatures are much higher than 200oC and 600oC for the normal TiSi2 system, due to high oxygen content in the current films (up to 15-20 at% as a result of our old sputtering system). Nevertheless, the co-sputtered TiSi2 thin films with 5 and 20 at% Ag can decrease the formation temperature of C54 TiSi2 phase to 800oC. Compare with the as-sputtered TiSi2 thin films, the desirable electric resistivity of the C54 phase in the 20 at% Ag thin films is also further reduced to 22.9 £g£[-cm. The time-dependent mechanical responses of the amorphous, crystalline C49, and C54 TiSi2 thin films are investigated by room-temperature nanoindentation at the different loading rates ranging from 0.0125 to 5 mN/s. The anelasticity response plays an important role in the current TiSi2 thin films and is found to be sensitive to the loading rate. The displacement of time-dependent anelasticity recorded during the period of hold time increases with increasing loading rate. The anelasticity behavior can be analyzed by the Kelvin model. The as-deposited amorphous phase, with a lower atomic packing density and higher degree of defects and free volumes, exhibits the higher anelasticity deformation and longer relaxation time.
10

Time dependent studies of foam stability using image analysis, electrical resistivity and ultrasound

Daugelaite, Daiva 14 December 2011 (has links)
The production of highly aerated foods remains a challenge that requires skill to obtain desired appearance and texture. Since foams are fragile and inherently unstable, evaluation of structure changes with time requires a delicate approach. Non-invasive but informative evaluation of changes in aerated food properties is a desired goal to be achieved in this thesis. I studied the aging of egg white foams of different void fraction using two noninvasive techniques - ultrasonic spectroscopy and electrical resistivity - with a view to understanding aging mechanisms that would affect the quality of the final product. To help in interpretation of the results, a commercial high void fraction foam, Gillette (Sensitive), was also analyzed. As a support technique for ultrasound results I used image analysis in order quantitatively evaluate the size of bubbles in the foams. Large increases in attenuation were observed with increasing aging time and frequency. Results were modeled using an effective medium theory originated by Foldy (1945) in order to understand the factors governing foam lifetime and texture. From electrical resistance measurements, liquid fraction changes in an egg white foam column were evaluated quantitatively and qualitatively by using a generalized free drainage model. Although egg-white foams were more prone to changes due to drainage, I observed that for all foams the ultrasonic scaling parameter alfa*lambda/freq was proportional to the square of average bubble size (indicative of a diffusively driven aging process due to disproportionation of bubbles). Slopes of alfa*lambda/freq versus aging time were 6*10-8 and 11*10-8 for egg white foams of void fraction 0.65 and 0.78, respectively, indicating that disproportionation progressed approximately twice as fast in the high void fraction foam. The slopes of alfa*lambda/freq versus aging time were similar for both Gillette foam void fractions (0.93 and 0.91) at a value of 1.5*10–8 s-1, attributable to a lower solubility of isobutane compared to air. By combining ultrasound and electrical resistivity, this thesis has provided novel insights into understanding instability processes occurring in foams. Potentially, ultrasound techniques could be used instead of imaging for foam aging studies, since non-invasive and non-destructive measurements of attenuation and phase velocity permit interrogation of opaque foam structures.

Page generated in 0.0903 seconds