• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 41
  • 35
  • 24
  • 19
  • 18
  • 17
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Research and Development of Low-Profile, Small Footprint Antennas for VHF-UHF Range Applications

Olaode, Olusola January 2012 (has links)
<p>Efficient, but low-profile and small-footprint antennas for VHF-UHF range applications remains an ongoing work. VHF range spans approximately 54 - 88 MHz while UHF roughly ranges from 174 - 890 MHz. The inverse relationship between the physical length and resonant frequency of an antenna, which is a measure of its operating frequency range, is well known. A direct correlation between an antenna's physical length and radiation efficiency has also been established. Therefore, a combination of these constraints complicates the design of low-frequency antennas that have small physical size but with enough radiation resistance to be an efficient radiator when connected to a source having a comparable resistance. Given the frequency bands above, their corresponding wavelengths will be: 3.4-5.5 m (VHF) and 0.3-1.7 m (UHF). The length of an antenna operating at these wavelengths would need to be electrically-small i.e. a fraction of wavelength given size constraints for applications such as defense or commercial mobile communication equipment. As a consequence, the radiation resistance of the antenna, which is a function of its radiation efficiency, is greatly reduced. In other words, the input impedance or radiation impedance (assuming negligible ohmic losses in the antenna structure) features a small resistive component and a large capacitive component, causing reflections of most of the incident power to the antenna. Highly-reactive antennas are not desired for most transmitters and receivers. Therefore, the radiation resistance of an antenna must be increased by increasing its electrical length while simultaneously maintaining a low profile and footprint. This aim can be achieved by configuring the antenna to excite a resonance at, or very close to a desired operating frequency. An approach that I will explore in this dissertation is to exploit the broadband characteristics of meander-line and helical (or "spiral") antennas typically applied in the microwave frequency range to the UHF-VHF range. I will also propose novel antenna geometries that combine spiral and meander-line properties and analyze their performance. These antennas offer significant size reductions; for example, a bowtie meander dipole antenna studied yielded a height reduction of 55% at 64 MHz relative to a half-wave dipole antenna of the same resonant frequency. In addition, I will present a set of equations developed for predicting the fundamental resonant frequency and radiation resistance of meander-line antennas.</p> / Dissertation
22

Development of sensing concrete: principles, properties and its applications

Ding, S., Dong, S., Ashour, Ashraf, Han, B. 14 November 2019 (has links)
Yes / Sensing concrete has the capability to sense its condition and environmental changes, including stress (or force), strain (or deformation), crack, damage, temperature and humidity through incorporating functional fillers. Sensing concrete has recently attracted major research interests, aiming to produce smart infrastructures with elegantly integrated health monitoring abilities. In addition to having highly improved mechanical properties, sensing concrete has multifunctional properties, such as improved ductility, durability, resistance to impact, and most importantly self-health monitoring due to its electrical conductivity capability, allowing damage detection without the need of an external grid of sensors. This tutorial will provide an overview of sensing concrete, with attentions to its principles, properties, and applications. It concludes with an outline of some future opportunities and challenges in the application of sensing concrete in construction industry. / National Science Foundation of China (51978127 and 51908103), the China Postdoctoral Science Fundation (2019M651116) and the Fundamental Research Funds for the Central Universities in China (DUT18GJ203). / National Science Foundation of China (NSFC) (Nos. 51978127 and 51908103), the China Postdoctoral Science Foundation (No. 2019M651116), and the Fundamental Research Funds for the Central Universities in China (No. DUT18GJ203).
23

Carbon Fiber-Carbon Black Interaction and Fiber Orientation in Electrically Conductive Amorphous Thermoplastic Composites

Motlagh, Ghodratollah 09 1900 (has links)
<p> An electrically conductive thermoplastic composite (ECTPC) consists of electrically conductive filler(s) at a concentration above percolation threshold distributed in an insulating polymer matrix. The high concentration of the filler required to achieve high electrical conductivity for ECTPC is usually accompanied with the deterioration of mechanical properties and a large increase in the viscosity which prevents feasible processing of these materials in common polymer processing equipments such as injection molding machinery. The initial focus of this work was to control these drawbacks by using combinations of conductive fillers namely carbon fiber (CF) and carbon black (CB) to create a hybrid-filler composite. Cyclic olefin copolymer (COC), an amorphous polyolefin, was used as the matrix material. It was found that carbon black and carbon fiber synergistically contribute to the transport of electrons through the matrix. The synergism exists at various filler concentrations including when one of the fillers was present below its percolation threshold, but not at high carbon fiber content. Results showed that where the concentration of CF was several fold higher than carbon black a good trade-off between viscosity and conductivity can be achieved so that the obtained composites can be reasonably processed tn common processing equipment e.g. in an injection molding machine </p> <p> Carbon fiber is preferred to carbon black as it leads to ECTPC with higher electrical conductivity and lower viscosity. However, the high aspect ratio fibers preferentially align in the flow direction leading to ECTPCs which have electrical conductivity several orders of magnitude greater in the in-plane rather than through-plane. We focused on foaming as a strategy to reorient the fibers toward the through-plane direction in foam injection molding. Through a fractional factorial experimental design, the effect of injection rate, melt temperature and mold temperature on electrical conductivity was screened at two levels for foam and nonfoam COC/CF(lO vol%)-CB(2 vol%) injection molded composites. It was found that foaming significantly enhanced the through-plane fiber orientation and through-plane conductivity of the hybrid composite at low injection rate and high melt temperature. The concurrence of the melt flow and bubble growth was considered to be the key mechanism for fiber reorientation while the cell size and shape should not disrupt the conductive path spanning the bulk of the material. </p> <p> The importance of the relative length scale of the fillers on cell size and subsequently, electrical conductivity was investigated by injection molding. Results showed that where the length scale of the filler was comparable to the cell size, as for foamed COC/CF composites, the conductivity considerably decreases with foaming. The drop was greater in the through plane direction and smaller in the in-plane direction for the composites with larger average fiber length. Also smaller cells led to a larger drop in the composite conductivity. It was observed that where the length scale of the filler was much smaller than the cell size as such for COC/CB composites, foaming enhanced the electrical conductivity particularly in the through-plane directions and its effects became more pronounced at lower carbon black concentrations. It was proposed that induced carbon black coagulation by foaming was the main reason for the observed improvement in conductivity. For COC/CF-CB hybrid composites, enhancement in through-plane conductivity, particularly at CB concentration below percolation, via foaming inferred that CB aggregates significantly contributed in improving fiber-fiber contacts. </p> <p> Reorientation of the fibers by foaming was found to be very dependent on processing conditions. High viscosity and fiber- fiber interactions can hinder fiber rotation. The general understanding of the investigation was that fiber reorientation may occur where the cells are much larger than the fibers. In comparison, a series of nonfoam injection molded composites containing CF, CB and CF-CB were foamed in a batch process to avoid flow effects. The insignificant change in fiber orientation with foaming proved that fibers can not rotate by the growth of an adjacent cell in the absence of shear. Also, a large drop in electrical conductivity with foaming as compared to the foam injection molded composites suggested that particle relocalization can not occur in batch foaming. </p> / Thesis / Doctor of Philosophy (PhD)
24

Comparison of Cation-Anion Oxidizer Pairings in Electrically Controllable Solid Propellants

Sellards, Emily Rose 13 February 2024 (has links)
Electrically controllable solid propellants are an area of interest as a viable solution to the lack of throttle-ability in solid propellant rocket motors. Existing studies have focused on propellants compositions using hydroxyl-ammonium nitrate, ammonium nitrate, or lithium perchlorate as oxidizers. Additionally, the thermochemical and electrochemical reaction mechanisms have not yet been fully defined. The research in this thesis explores the nitrate and perchlorate oxidizer families to compare their cation-anion relationships. Using these oxidizers, pseudo electrically controllable solid propellant compositions were created with the addition of multi-wall carbon nanotubes to enhance ohmic heating capabilities. These additives were selected based on theory that with a non-complexing polymer, an oxidizer melt layer is required for ions to dissociate and electrically controlled ignition to occur. Using an applied voltage, ignition delay and current draw experiments were performed to expand on prior findings that ignition delay follows oxidizer melt temperature while mobility is associated with the size of the ionic radii. Additionally, neat oxidizer pellets were electrically decomposed to determine their linear regression rate. These results help to characterize the mechanism of reaction. This advances the knowledge of oxidizers in electrically controllable applications. / Master of Science / Solid propellant rocket motors have been extensively studied and used in both space and military applications because they do not use air as the source of oxygen. Their main limitation is the lack of throttle-ability, or inability to control propellant burning. This is because solid propellants, which are generally composed of an ionic oxidizer salt, a polymer fuel, and additives, are pre-combined and stored within the rocket motor. An emerging viable solution to this limitation is electrically controllable solid propellants. With an applied voltage, the oxidizer is heated and melts, allowing ions to dissociate and current to flow between electrodes. This reaction can then be controlled by turning the power supply on and off. Cations, or ions which have a net positive charge, move to the negatively charged cathode while anions, which have a net negative charge, move to the negatively charged anode. The research in this thesis explores different cation-anion oxidizer pairings using both a propellant composition and as a pure oxidizer under an applied voltage. The results help to characterize the mechanism of reaction of each oxidizer in an electrically controllable context and determine their effectiveness in these propellant applications.
25

Theoretical Modeling Approach for a Common Residential Electrically Heated Oven and Proposed Oven Design Modification

Breen, Mark Allan 11 December 2004 (has links)
Current research has developed a fully predictive model of an electrically heated common residential oven. This system was modeled using a fully explicit approach and, where applicable, considered natural convective correlations, various radiation networks, and conduction relations. Two oven configurations were modeled, a conventional (unmodified) residential oven and a modified design. By comparing the theoretical results obtained through modeling with experimental results, verification of the modeling assumptions and results has been achieved. This research has produced an analytical design tool for predictive modeling of time dependant surface temperatures, maximum expected temperatures, and the baking performance of various oven designs. Thus this software package can be used to predict the overall feasibility of an oven design prior to fabrication.
26

Reconfigurable Resonant Cubic HF Phased Array for In-Space Assembly Operation

Kent, Peter Josiah 01 February 2023 (has links)
Conventional two-dimensional phased arrays face two major shortcomings: the presence of ambiguities in direction of arrival measurements and beam broadening endfire effects. The literature provides methods for addressing and minimizing these problems on conventional planar phased array structures, but there has been no investigation into solving these issues with three-dimensional geometries. In this thesis, the design and performance of a cubic phased array that can eliminate endfire effects and dramatically improve direction of arrival ambiguity resolution is investigated. Both beamforming and direction of arrival simulations are performed in MATLAB and 4nec2 simulation environments for cubic phased arrays of various sizes and at different frequencies and demonstrate that the endfire effects are eliminated and direction of arrival ambiguity resolution is dramatically improved. These findings are expected to lead to new designs of high fidelity three-dimensional phased arrays. / Master of Science / Conventional two-dimensional, flat, plane antenna arrays have revolutionized how sensing and detection systems perform. These systems, however, face two major shortcomings due to their "flat" geometry. The computation that determines the direction from which an object is approaching or a signal has been transmitted will have two solutions that are opposite each other in the same way that the polynomial expression x2 = +2 or -2 has two solutions that are opposite each other. This is known as the ambiguity problem and presents major uncertainty in direction finding or direction of arrival measurements. The second major shortcoming has to do with transmitting a signal at different directions. The antenna elements in the array are stationary, but the beams that each element transmits can be aimed in specific directions by controlling the phase of the voltage sources for each respective antenna. This is why it is called a phased array. When every element is transmitting directly forward, it is known as broadside. As the voltage sources for the elements are shifted, or steered, away from this direction, it is known as beam steering. When the beam is steered 90 degrees from the broadside direction, the beams of one column of elements are actually transmitting into the next column of elements, effectively transmitting out of a one-dimensional line array. This is known as endfire and has significant negative effects that are often desired to be avoided. Current scientific literature provides methods for addressing and minimizing these problems on conventional two-dimensional planar phased array structures, but there has been no investigation into solving these issues with three-dimensional geometries. In this thesis, the design and performance of a cubic phased array is presented. The cubic phased array eliminates endfire effects entirely because each face of the cube is identical; when transmitting at 90 degrees off broadside, the transmit area of the cube is identical to that of the broadside direction. The cubic geometry also dramatically improves the direction-finding process. By introducing a third dimension, the mathematics can more precisely determine the direction from which the object or the signal is coming, thus dramatically decreasing the ambiguity simply as a function of geometry. Both beam steering and direction of arrival simulations are performed in MATLAB and 4nec2 simulation environments for cubic phased arrays of various sizes and at different frequencies. This demonstrates that the endfire effects are eliminated and direction of arrival performance is dramatically improved. These findings are expected to lead to new designs of high fidelity three-dimensional phased arrays for a multitude of applications, especially for space applications where the three-dimensional geometry has the added benefit of resolving the requirements for compensation for the tumbling motion of objects in orbit.
27

Analyses and Applications of Thermoelectric Modules: Electrically Parallel and Serial Structures

Wu, Guangxi 31 May 2016 (has links)
No description available.
28

Experiences from Cochlear Implantation and Auditory Brainstem Implantation in Adults and Children : Electrophysiological Measurements, Hearing Outcomes and Patient Satisfaction

Lundin, Karin January 2016 (has links)
Cochlear implants (CIs) and auditory brainstem implants (ABIs) are prostheses for hearing used in patients with profound hearing impairment. A CI requires an operational cochlear nerve to function in contrast to an ABI. ABIs were initially designed for adult patients with neurofibromatosis type 2 (NF2), suffering from bilateral vestibular schwannomas. Now ABIs are also used for patients, both adults and children, with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, and cochlear ossification. The aims of this thesis are to evaluate hearing outcome in patients implanted with a CI after long-term deafness. An extended period of deafness has earlier been considered as a contraindication for CI surgery. Further, we analyzed if electrically evoked auditory brainstem responses (eABRs) can predict CI outcome and pinpoint the optimal selection of treatment such as CI or ABI. We also disclose our experiences from ABI surgery in Uppsala, such as implant use, hearing outcome, complications, and satisfaction among the patients. Finally, we evaluated the results and benefits of ABIs in non-NF2 pediatric patients. Results show that patients with an extended deafness period and durations over 20 years can achieve speech understanding and benefit from CIs. Patients with long-term deafness and limited years of hearing before deafness did not perform as well as those with shorter deafness duration and longer hearing experience did. eABR seems to have a definite role in the diagnostic armamentarium, to better consider alternative surgical strategies such as ABI. No eABR waveform predicted a poor CI outcome. There was no correlation between speech perception and eABR waveform latencies or eABR waveform quality. A majority of the ABI patients used their ABIs and benefited from them for at least some period. ABI assisted voice control in a majority of the full-time users and they reported improved understanding of speech with the implant switched on. No severe complications from ABI surgery or ABI stimulation were noted. The patients were generally satisfied, even if their hearing remained very limited. All pediatric patients but one used the implant continuously and benefited from it.
29

Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites

Barakati, Amir 01 December 2012 (has links)
Recent advances in manufacturing of multifunctional materials have provided opportunities to develop structures that possess superior mechanical properties with other concurrent capabilities such as sensing, self-healing, electromagnetic and heat functionality. The idea is to fabricate components that can integrate multiple capabilities in order to develop lighter and more efficient structures. In this regard, due to their combined structural and electrical functionalities, electrically conductive carbon fiber reinforced polymer (CFRP) matrix composites have been used in a wide variety of applications in most of which they are exposed to unwanted impact-like mechanical loads. Experimental data have suggested that the application of an electromagnetic field at the moment of the impact can significantly reduce the damage in CFRP composites. However, the observations still need to be investigated carefully for practical applications. Furthermore, as the nature of the interactions between the electro-magneto-thermo-mechanical fields is very complicated, no analytical solutions can be found in the literature for the problem. In the present thesis, the effects of coupling between the electromagnetic and mechanical fields in electrically conductive anisotropic composite plates are studied. In particular, carbon fiber polymer matrix (CFRP) composites subjected to an impact-like mechanical load, pulsed electric current, and immersed in the magnetic field of constant magnitude are considered. The analysis is based on simultaneous solving of the system of nonlinear partial differential equations, including equations of motion and Maxwell's equations. Physics-based hypotheses for electro-magneto-mechanical coupling in transversely isotropic composite plates and dimension reduction solution procedures for the nonlinear system of the governing equations have been used to reduce the three-dimensional system to a two-dimensional (2D) form. A numerical solution procedure for the resulting 2D nonlinear mixed system of hyperbolic and parabolic partial differential equations has been developed, which consists of a sequential application of time and spatial integrations and quasilinearization. Extensive computational analysis of the response of the CFRP composite plates subjected to concurrent applications of different electromagnetic and mechanical loads has been conducted. The results of this work verify the results of the previous experimental studies on the subject and yield some suggestions for the characteristics of the electromagnetic load to create an optimum impact response of the composite.
30

Reconfigurable Dielectric Resonator Antennas

Desjardins, Jason 21 March 2011 (has links)
With the increasing demand for high performance communication networks and the proliferation of mobile devices, significant advances in antenna design are essential. In recent years the rising demands of the mobile wireless communication industry have forced antennas to have increased performance while being limited to an ever decreasing footprint. Such design constraints have forced antenna designers to consider frequency agile antennas so that their behavior can adapt with changing system requirements or environmental conditions. Frequency agile antennas used for mobile handset applications must also be inexpensive, robust, and make use of electronic switching with reasonable DC power consumption. Previous works have addressed a number of these requirements but relatively little work has been performed on frequency agile dielectric resonator antennas (DRAs). The objective of this thesis is to investigate the use of DRAs for frequency reconfigurability. DRAs are an attractive option due to their compactness, very low losses leading to high radiation efficiencies (better than 95%) and fairly wide bandwidths compared to alternatives. DRA’s are also well suited for mobile communications since they can be placed on a ground plane and are by nature low gain antennas whose radiation patterns typically resemble those of short electric or magnetic dipoles. One way to electronically reconfigure a DRA, in the sense of altering the frequency band over which the input reflection coefficient of the antenna is below some threshold, is to partially load one face of the DRA with a conducting surface. By altering the way in which this surface connects to the groundplane on which the DRA is mounted, the DRA can be reconfigured due to changes in its mode structure. This connection was first made using several conducting tabs which resulted in a tuning range of 69% while having poor cross polarization performance. In order to address the poor cross polarization performance a second conducting surface was placed on the opposing DRA wall. This technique significantly reduced the cross polarization levels while obtaining a tuning range of 83%. The dual-wall conductively loaded DRA was then extended to include a full electronic implementation using PIN diodes and varactor diodes in order to achieve discrete and continuous tuning respectively. The two techniques both achieved discrete tuning ranges of 95% while the varactor implementation also had a continuous tuning range of 59% while both maintaining an acceptable cross polarization level.

Page generated in 0.0713 seconds