• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 449
  • 235
  • 130
  • 99
  • 46
  • 24
  • 13
  • 11
  • 11
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 1218
  • 177
  • 177
  • 173
  • 147
  • 141
  • 131
  • 121
  • 96
  • 96
  • 95
  • 94
  • 86
  • 81
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Anchoring a Molecular Iron Based Water Oxidation Catalyst onto a Carbon Paste Electrode

BYSTRÖM, MARCUS January 2015 (has links)
This thesis concerns the development and the study of Iron-based water oxidation catalysts (WOCs) and how to immobilize them onto the hydrophobic surface of a carbon paste electrode. In the introductory chapter a general background of the field of water splitting and this thesis is given. In the second chapter, experimental performance is described from synthesis to measurements of a complete complex-doped electrode. The third chapter deals with the results and the discussion of the performed experiments. In chapter four, a descriptive conclusion of the obtained data is held. / Det här arbetet berör studien och utvecklingen utav järnbaserade katalysatorer, speciellt framtagna för för delning utav vatten. Utöver detta undersöks även om dessa katalysatorer (WOCs) kan immobiliseras på den hydrofoba ytan hos elektroder gjorda på kol-pasta. I det inledande kapitlet ges en generell bakgrund till området som berör delning utav vatten. I det andra kapitlet presenteras det experimentella utförandet utav synteser samt elektrokemiska mätningar som berörts under arbetets gång i jakten på en komplexdopad elektrod. I det tredje kapitlet diskuteras resultaten från mätningarna samt möjliga framtidsutsikter. I det fjärde kapitlet presenteras slutsatserna utav studien.
502

Electroorganic synthesis using a Polymer Electrolyte Membrane Electrochemical Reactor: electrooxidation of primary alcohols in alkaline medium

García Cruz, Leticia 09 September 2016 (has links)
No description available.
503

Acute Effects of the Antibiotic Streptomycin on Neural Network Activity and Pharmacological Responses

Zeng, Wei Rong 12 1900 (has links)
The purpose of this study is to find out that if antibiotic streptomycin decreases neuronal network activity or affects the pharmacological responses. The experiments in this study were conducted via MEA (multi-electrode array) technology which records neuronal activity from devices that have multiple small electrodes, serve as neural interfaces connecting neurons to electronic circuitry. The result of this study shows that streptomycin lowered the spike production of neuronal network, and also, sensitization was seen when neuronal network pre-exposed to streptomycin.
504

Characterizing Interactions of Ionic Liquid Based Electrolytes with Electrospun Gas Diffusion Electrode Frameworks by 1H PFG NMR

Merz, Steffen, Jakes, Peter, Tempel, Hermann, Weinrich, Henning, Kungl, Hans, Eichel, Rüdiger-A., Granwehr, Josef 11 September 2018 (has links)
Pulsed field gradient (PFG) 1H NMR was used to characterize the mobility of ionic liquid cations in porous gas diffusion electrode (GDE) frameworks for metal–air electrochemical systems. The carbon GDE frameworks were produced by electrospinning. It was found that the motion of ionic liquids in the highly porous hosts is more complex than what is commonly exhibited by conventional fluids, which makes a multimodal investigation essential for an adequate description of mobility and wetting of GDEs. Observed NMR diffraction-like patterns cannot be linked to the tortuosity limit but may serve as a proxy for structural features in the fibrous material. While the observed data were interpreted using standard theoretical models, alternative explanations and causes for artifacts are discussed.
505

New strategies of acquisition and processing of encephalographic biopotentials

Nonclercq, Antoine 04 June 2007 (has links) (PDF)
Electroencephalography is a medical diagnosis technique. It consists in measuring the biopotentials produced by the upper layers of the brain at various standardized places on the skull.<p><p>Since the biopotentials produced by the upper parts of the brain have an amplitude of about one microvolt, the measurements performed by an EEG are exposed to many risks.<p><p>Moreover, since the present tendency is measure those signals over periods of several hours, or even several days, human analysis of the recording becomes extremely long and difficult. The use of signal analysis techniques for the help of paroxysm detection with clinical interest within the electroencephalogram becomes therefore almost essential. However the performance of many automatic detection algorithms becomes significantly degraded by the presence of interference: the quality of the recordings is therefore fundamental. <p><p>This thesis explores the benefits that electronics and signal processing could bring to electroencephalography, aiming at improving the signal quality and semi-automating the data processing.<p><p>These two aspects are interdependent because the performance of any semi-automation of the data processing depends on the quality of the acquired signal. Special attention is focused on the interaction between these two goals and attaining the optimal hardware/software pair. <p><p>This thesis offers an overview of the medical electroencephalographic acquisition chain and also of its possible improvements.<p> <p>The conclusions of this work may be extended to some other cases of biological signal amplification such as the electrocardiogram (ECG) and the electromyogram (EMG). Moreover, such a generalization would be easier, because their signals have a wider amplitude and are therefore more resistant toward interference.<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
506

Development of a bipolar nickel-iron battery prototype for energy storage

Ltaief, Mohamed Ali Ben January 2021 (has links)
Philosophiae Doctor - PhD / Energy storage systems represent a viable option to integrate renewable energy sources into the grid network. Multiple energy storage technologies are available such as mechanical, electrical, thermal, and electrochemical storage technologies. Battery Energy Storage Systems are considered as an accepted solution for energy storage with advantages such as, sustained power delivery, geographical independence and, fast response capability. This thesis describes the development of rechargeable bipolar Nickel-Iron batteries as potential candidates for cost effective energy storage solutions. The first objective of this work was to design a bipolar electrode comprising an Iron (Fe)-based anode, a Nickel (Ni)-based cathode and a flexible bipolar plate and to optimise its production process in order to attain high performance in terms of capacity and efficiency. Research questions to be answered included;
507

Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen Peroxide

Ogbu, Chidiebere I., Feng, Xu, Dada, Samson N., Bishop, Gregory W. 01 September 2019 (has links)
Nitrogen-doped carbon materials have garnered much interest due to their electrocatalytic activity towards important reactions such as the reduction of hydrogen peroxide. N-doped carbon materials are typically prepared and deposited on solid conductive supports, which can sometimes involve time-consuming, complex, and/or costly procedures. Here, nitrogen-doped screen-printed carbon electrodes (N-SPCEs) were fabricated directly from a lab-formulated ink composed of graphite that was modified with surface nitrogen groups by a simple soft nitriding technique. N-SPCEs prepared from inexpensive starting materials (graphite powder and urea) demonstrated good electrocatalytic activity towards hydrogen peroxide reduction. Amperometric detection of H2O2 using N-SPCEs with an applied potential of −0.4 V (vs. Ag/AgCl) exhibited good reproducibility and stability as well as a reasonable limit of detection (2.5 µM) and wide linear range (0.020 to 5.3 mM).
508

Nitrogen Doping of Electrochemically Activate Carbon Screen-Printed Electrodes

Galloway, Ethan 01 May 2022 (has links)
Screen printed electrodes (SPEs), which are prepared by patterning conductive inks or pastes onto an insulating support (e.g., plastic film), are widely employed as sensing and biosensing platforms due to their ease of fabrication and relatively low cost. This is especially applicable to electrodes of this nature prepared with carbon-based inks (SPCEs). To date, the most successful and significant commercial application of SPEs has been as test strips for glucose meters. Despite the maturity of this technology, SPE research remains very active as improvements in sensitivity and selectivity, which often involve modifying the electrode surface, hold the key to advancing their utility in routine applications and extending their benefits to other target analytes. Recent studies in the Bishop research group have demonstrated that nitrogen-doped SPCEs (N-SPCEs) exhibit enhanced electrochemical response towards hydrogen peroxide (H2O2), a product of oxidase enzyme (e.g., glucose oxidase, lactate oxidase, etc.) reactions and a common target in biosensing strategies. The presence of nitrogen heteroatoms on the carbon surface facilitates breakage of oxygen-oxygen bonds, a key step in reduction of H2O2. Since previous studies showed only modest incorporation of nitrogen species on SPCEs prepared from commercial ink, these studies aim to investigate the possibility of enhancing N-doping by performing a simple pre-treatment strategy that reportedly increases surface oxygen content of SPCEs prior to N-doping. Since surface oxygen sites have been previously reported to be preferentially modified with nitrogen during N doping strategies, this seems like a promising technique for improving sensitivity of N-SPCEs for H2O2 reduction. To quantify the actuality of these claims, experimental groups were fabricated having undergone no enhancement, pretreatment enhancement only, nitrogen-doping enhancement only, and a combination of the pretreatment and nitrogen-doping enhancements. Here the electrochemical behaviors of pretreated SPCEs, N-SPCEs, and pretreated N-SPCEs for the detection of H2O2 by completing comparative cyclic voltammetry (CV) experiments with and without the presence of H2O2 and with it present in varying concentrations is compared. It is projected that, if successful, the fabricated electrodes that have undergone both the pretreatment protocol and the nitrogen-doping process will have an increased sensitivity and detection limit towards H2O2.
509

A Novel Dry Electrode for Brain-Computer Interface

Sellers, Eric W., Turner, Peter, Sarnacki, William A., McManus, Tobin, Vaughan, Theresa M., Matthews, Robert 28 October 2009 (has links)
A brain-computer interface is a device that uses signals recorded from the brain to directly control a computer. In the last few years, P300-based brain-computer interfaces (BCIs) have proven an effective and reliable means of communication for people with severe motor disabilities such as amyotrophic lateral sclerosis (ALS). Despite this fact, relatively few individuals have benefited from currently available BCI technology. Independent BCI use requires easily acquired, good-quality electroencephalographic (EEG) signals maintained over long periods in less-than-ideal electrical environments. Conventional, wet-sensor, electrodes require careful application. Faulty or inadequate preparation, noisy environments, or gel evaporation can result in poor signal quality. Poor signal quality produces poor user performance, system downtime, and user and caregiver frustration. This study demonstrates that a hybrid dry electrode sensor array (HESA) performs as well as traditional wet electrodes and may help propel BCI technology to a widely accepted alternative mode of communication.
510

The amounts of fluorides (alkali-soluble as well as insoluble) gained on and in enamel of third molars from a high fluoride area

Van Zyl, Jacobus Francois January 1992 (has links)
Magister Chirurgiae Dentium (MChD) / A total of 25 third molar teeth (erupted [9], as well as unerupted [16]), from subjects who had lived continuously since birth in an area where the water fluoride concentration was more than 1,8 ppm, were studied. (The range was 1,8 ppm - 2,64 ppm of F-). The subjects had no systemic fluoride supplementation. Tooth brushing with a fluoride containing dentifrice and, perhaps, occasional fluoride mouth rinsing was the only additional exposure to fluoride. The acid-etch biopsy technique was used to determine the fluoride and calcium concentrations at various depths on the enamel surface. The fluoride concentration of the buffered etch solution was determined with an adapted fluoride ion-selective electrode technique, and the amount of calcium by flame atomic absorption spectrophotometry. Six consecutive etchings were done on the mesio-buccal and mesio-lingual cusps of each tooth; the teeth were then washed in an alkali and the same procedure repeated on the disto-buccal and disto-lingual cusps. The depth of etch of each biopsy was calculated assuming that human enamel contains 37% Ca and has a density of 2,95g/ml. It was previously reported, (Grobler & Joubert, 1988), that the enamel fluoride levels of the mesio-buccal and mesio-Iingual sides did not differ from that of the disto-buccal and disto-Iingual sides. The average etch depth and fluoride concentration value as calculated from the values for the two cusps per tooth were used for statistical analysis. The mean etch depths (pm) and mean enamel fluoride concentrations of alkali-washed and unwashed enamel of both erupted and unerupted teeth were tabled, together with the standard deviations and range for each etch. Contrary to the results obtained from a low F- area, no significant difference (p>O.05) could be found in the etch depth between erupted and unerupted enamel in this study. Graphs were plotted by a line fitted to the mean enamel fluoride concentration and mean etch depths values of unwashed erupted, unwashed unerupted, alkali-washed erupted and alkali-washed unerupted third molar teeth. These graphs were compared to the graphs obtained in a comparable study done by Grobler and Kotze (1990), on erupted and unerupted third molar teeth from a low fluoride area (F- < 0,10 ppm). Results indicate that the enamel fluoride concentration in the bulk of the enamel of teeth from a high fluoride area (> 1,8 ppm), is higher than that of teeth from a low fluoride area « 0,10 ppm ). In contrast to the teeth from a low fluoride area, where there was a significant increase (p<0.05) in the fluoride concentration of the outer layer (± 4 J,lm) of erupted enamel when compared to that of the unerupted enamel, no notable increase in the F- content of the enamel was observed in the present study of teeth from a high fluoride area (p>0,05). There was, in addition, no significant (p>0.05) difference between the enamel fluoride content of alkali-washed and unwashed, erupted and unerupted teeth, which showed that very little CaF 2-like material was gained by the enamel after eruption. In both studies the subjects had brushed with a fluoride dentifrice for a period of 1 - 16 years. It was expected that this topical exposure would increase the surface enamel concentration in the high fluoride area similar to the increase found in the low fluoride area. However, this was not the case, and as all the teeth from the high fluoride area exhibited some degree of fluorosis, it was concluded that posteruptive fluoride uptake by fluorotic human enamel without severe enamel loss is limited. This is in agreement with work done by Richards, Fejerskov, Baelum and Likimani (1989).

Page generated in 0.0561 seconds