• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recovery of stranded heavy oil by electromagnetic heating

Carrizales, Maylin Alejandra 29 November 2012 (has links)
High oil-viscosity is a major concern for the recovery of oil from heavy-oil reservoirs. Introducing energy to the formation has proven to be an effective way of lowering the oil viscosity by raising the temperature in the formation. The application of low-frequency heating, also known as electrical resistance heating, is limited by water vaporization near the wellbore which breaks the conductive path to the reservoir, and limits the heating rate as well as the resulting production rates. Electromagnetic (EM) heating, also called high-frequency heating, can be used instead. Although its potential was recognized during the late 70’s, no simulation results or detailed modeling studies have yet been published that completely model the complex interactions of EM energy and multiphase flow. One of the main drawbacks of proposed models is the use of the EM adsorption coefficient as a constant regardless of the properties of the medium, which can obscure the important effect of this parameter on the extension of the reservoir area heated. This dissertation presents a multiphase, two-dimensional radial model that describes the three-phase flow of water, oil, and steam and heat flow in a reservoir within confining conductive formations. The model accounts for the appearance and/or disappearance of a phase, and uses the variation in temperature and water saturation to update the EM absorption coefficient. This model allows determining the temperature distribution and the productivity improvement from EM heating when multiple phases are present. For the numerical simulations of EM heating, I used COMSOL Multiphysics, a Lagrange-quadratic finite element simulator, and its partial differential equations (PDE) application. Several simulations were made for hypothetical reservoirs with different fluid and rock properties. Also, analytical solutions for a single-phase EM heating model were developed and used to validate the numerical solutions. Special attention is focused on reservoirs with characteristics for which steam injection is not attractive or feasible such as low permeability, thin-zone, and extra-heavy oil reservoirs. Results showed that EM heating is feasible based on the power source and frequency used to maintain an optimum absorption coefficient and to obtain higher production rates. Comparisons showed that cumulative oil production and recovery factor obtained by EM heating are better than what is achieved by cyclic steam stimulation (CSS) for reservoirs with the above mentioned characteristics. / text
2

Modelagem computacional do escoamento bifásico em um meio poroso aquecido por ondas eletromagnéticas

Taipe, Stiw Harrison Herrera 26 January 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-03-27T18:18:55Z No. of bitstreams: 1 stiwharrisonherrerataipe.pdf: 5886256 bytes, checksum: 4fa85d1d9808790a2f5c85bb6c6c8d8d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-03-28T16:44:29Z (GMT) No. of bitstreams: 1 stiwharrisonherrerataipe.pdf: 5886256 bytes, checksum: 4fa85d1d9808790a2f5c85bb6c6c8d8d (MD5) / Made available in DSpace on 2018-03-28T16:44:30Z (GMT). No. of bitstreams: 1 stiwharrisonherrerataipe.pdf: 5886256 bytes, checksum: 4fa85d1d9808790a2f5c85bb6c6c8d8d (MD5) Previous issue date: 2018-01-26 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estamos interessados em estudar, mediante simulações computacionais, se o aquecimento eletromagnético é capaz de melhorar o deslocamento do óleo pela água. Nesta direção, nos baseamos nos resultados obtidos pela equipe da TU Delft da Holanda, que desenvolveu experimentos de laboratório que demonstravam a distribuição da temperatura em um meio poroso, onde o óleo está sendo deslocado pela injeção de água, gerada por aquecimento eletromagnético. Para tanto, definimos o modelo matemático que governa o problema em questão regido por equações diferenciais parciais das leis de conservação de massa e energia. Assim, partindo da caracterização do contínuo e estendendo a lei de Darcy para o caso multifásico, através da introdução do conceito de permeabilidades relativas dos fluidos, derivamos um sistema acoplado de equações diferenciais parciais com coeficientes variáveis e termos não lineares formulados em função da velocidade de Darcy para o escoamento bifásico (água, óleo) aquecido por ondas eletromagnéticas. O modelo matemático é discretizado utilizando o método de diferenças finitas no tempo e no espaço e a técnica Splitting. Dessa forma dividimos o sistema de equações diferencias parciais em dois subsistemas. O primeiro subsistema consiste em resolver a parte difusiva e reativa e o segundo subsistema tem por objetivo a resolução do termo convectivo. O método numérico desenvolvido é validado por simulações computacionais que visam a comparação com os resultados obtidos experimentalmente e com soluções semi-analíticas, para este problema, que foram derivadas pelo método do princípio de Duhamel. Além disso, o método proposto quando aplicado para o caso geral da simulação do escoamento bifásico com aquecimento eletromagnético demonstrou um ganho de 1.67%, se comparado ao método sem aquecimento. / In this work we are interested in studying, through computational simulations, if the electromagnetic heating is able to improve the displacement of the oil by water. In this direction, we rely on the results obtained by the TU Delft team from the Netherlands, which developed laboratory experiments that demonstrated the temperature distribution in a porous medium where the oil is being displaced by the injection of water generated by electromagnetic heating. For this, we define the mathematical model that governs the problem in question governed by partial differential equations of the laws of conservation of mass and energy. Thus, starting from the characterization of the continuum and extending Darcy’s law to the multiphase case, by introducing the concept of relative permeabilities of fluids, we derive a coupled system of partial differential equations with variable coefficients and non-linear terms formulated as a function of the velocity of Darcy for two-phase flow (water, oil) heated by electromagnetic waves. The mathematical model is discretized using the finite difference method in time and space and the Splitting technique. In this way we divide the system of partial differential equations into two subsystems. The first subsystem consists of solving the diffusive and reactive part and the second subsystem aims to solve the convective term. The numerical method developed is validated by computational simulations aimed at the comparison with the results obtained experimentally and with semi-analytical solutions, for this problem, which were derived by the Duhamel principle method. In addition, the proposed method when applied to the general case of simulation of the biphasic flow with electromagnetic heating demonstrated a gain of 1.67%, when compared to the non-heating method.
3

Investigation of RF Curing Parameters in Resin Infusion Molding

Love, Christopher K. 16 March 2010 (has links) (PDF)
The purpose of this study is to investigate RF or Radio Frequency energy as a viable alternative to traditional heating methods for the purpose of curing resins used in resin infusion molding, a molding system for polymeric composites. Traditional heating/curing methods include technologies such as room temperature, oven, microwave, infrared, and ultraviolet. Although RF curing provides far more advantages than disadvantages, its implementation into a manufacturing process can be challenging. Specifically, three critical elements must be present in order for RF to function in a manner that is profitable to the manufacturer. Those elements are: (1) the proper generator (voltage and frequency), (2) the correct electrode configuration, and (3) the appropriate material sensitizer (amount and type). There is also the consideration of initial capital investment; which is by no means insignificant. However, if all 3 elements are present, the benefits can be immediate and numerous. Potential advantages include the following: improved part quality through penetrating and uniform heating; competitive, if not superior, material physical properties; and drastically reduced curing times. Other potential advantages include floor space savings, high energy efficiency, and increased operational flexibility. For the purpose of this thesis, experimentation will be conducted to first confirm and then, if successful, quantitatively capture the reduction in curing time. Physical properties will also be measured using tensile testing to determine whether or not RF curing can facilitate minimal loses in the material's physical properties.
4

Estudo analítico da injeção de água com aquecimento eletromagnético em um meio poroso contendo óleo

Paz, Pavel Zenon Sejas 28 August 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-13T13:25:29Z No. of bitstreams: 1 pavelzenonsejaspaz.pdf: 1021401 bytes, checksum: 6c80da770310ced9141a330e3a4d4f9b (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:32:38Z (GMT) No. of bitstreams: 1 pavelzenonsejaspaz.pdf: 1021401 bytes, checksum: 6c80da770310ced9141a330e3a4d4f9b (MD5) / Made available in DSpace on 2016-01-25T17:32:38Z (GMT). No. of bitstreams: 1 pavelzenonsejaspaz.pdf: 1021401 bytes, checksum: 6c80da770310ced9141a330e3a4d4f9b (MD5) Previous issue date: 2015-08-28 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho apresentamos um estudo analítico sobre a recuperação de óleo pesado utilizando injeção de água, que é aquecida por meio de ondas eletromagnéticas de alta freqüência. Recentemente, foi feito um experimento (descrito em [12]), onde a água foi injetada num meio poroso, aquecida por meio de ondas eletromagnéticas. Os resultados do experimento mostram que o aquecimento mediante ondas EM melhora o deslocamento do óleo pela água. Desta maneira, apresenta-se a injeção de água com aquecimento por ondas EM como um método viável na recuperação de óleo. Consideraremos um modelo matemático simples descrevendo o experimento mencionado acima, que consiste de duas leis de balanço, uma para a energia e outra para a massa da água. O objetivo do trabalho é usar o Princípio de Duhamel e a Teoria das Leis de Conservação para encontrar soluções semi-analíticas deste modelo simplificado. Segundo [8], utilizamos o Princípio para achar a solução da equação de balanço de energia do tipo Convecção-Reação-Difusão para o problema de transporte de calor num meio poroso na presença de uma fonte de ondas eletromagnéticas. A equação de balanço para a massa da água é uma equação diferencial parcial não linear de primeira ordem do tipo Buckley-Leverett (Veja [4] e [7]). Ela será resolvida usando a Teoria das Leis de Conservação. Segundo [15], a solução deste problema contém ondas de rarefação e choque. / In this work, we present the results obtained by analytical study of heavy oil recovery by water flooding and electromagnetic (EM) heating of high frequency. Recently, an experiment was made, where water was injected into a porous medium, warmed by means of electromagnetic waves. The experiment results show that EM heating improves the displacement of oil by water. Thus, the water flooding combined with EM heating is a viable method for oil recovery. We consider a simple mathematical model describing this experiment consisting of two balance laws for energy and water mass. The goal is to use Duhamel’s Principle and the Theory of Conservation Laws to find semi-analytical solutions of this simplified model. We use the principle solve the energy balance equation of convection-reaction-diffusion type for heat transport problem in a porous medium in the presence of a source of electromagnetic waves. The balance equation for the mass of water is a nonlinear partial differential equation of first order of Buckley-Leverett type. It is solved using the Theory of Conservation Laws.

Page generated in 0.1056 seconds