Spelling suggestions: "subject:"electron transfer"" "subject:"alectron transfer""
381 |
Photoinduced transfer processes in complex carrier systems for photodynamic therapyRegehly, Martin 10 September 2008 (has links)
Der Gegenstand der vorliegenden Arbeit ist die photophysikalische Untersuchung von drei unterschiedlichen Photosensibilisator-Transportsystemen hinsichtlich ihrer Eignung für die photodynamische Therapie. In Fulleren-Pyropheophorbid-a-Konjugaten (P6, FHP6, FP6) finden nach Lichtabsorption effiziente Energietransferprozesse sowie exzitonische Wechselwirkungen unter den Pyropheophorbid a Chromophoren statt. Exzitonische Interaktionen limitieren das Potential der Komplexe zytotoxischen Singulett-Sauerstoff unter Lichtanregung zu generieren. Im Molekül FP6 wurde zusätzlich ein Elektrontransfer vom Pyropheophorbide a zum Fulleren beobachtet. FP6 ist daher für die photodynamische Therapie ungeeignet, kann aber aufgefaßt werden, als die Kombination eines Lichtsammelkomplex mit ladungsseparierendem Zentrum. Weiterhin wurde die Eignung von wasserlöslichen Zinkprotoporphyrin (ZnPP) Polymerkonjugaten als neuartige Photosensibilisatoren für die photodynamische Therapie von soliden Tumoren untersucht. Pegyliertes ZnPP (PEG-ZnPP) bildet mizellare Aggregate in Lösung, wobei die hydrophoben ZnPP Kopfgruppen starke exzitonische Wechselwirkungen unter Lichtanregung eingehen. Dies führt zu einer Unterdrückung der Generierung von Singulett-Sauerstoff in wässriger Lösung. Für ein Styren-Maleinsäure Copolymer, welches ZnPP nicht-kovalent inkorporiert (SMA-ZnPP), wurde ähnliche Resultate gefunden. In-vitro Experimente zeigten, dass die Mizelle nach Aufnahme in die Tumorzellen ihre Integrität verliert und ZnPP monomer freigesetzt wird. Unter Beleuchtung generiert SMA-ZnPP eine hohe Phototoxizität. Polymere Träger-Photosensibilisator Systeme erlauben die Entwicklung effizienter photodynamische Therapien unter der Voraussetzung, das die intramolekularen Transferprozesse unter den Chromophoren gezielt manipuliert werden durch das Trägersystem und somit vorteilhaft genutzt werden können. / The main objective of the thesis is the photophysical investigation of three different photosensitizer-carrier systems concerning the applicability of these macromolecules for photodynamic therapy. For hexapyropheophorbide a-fullerene [C60] molecular systems (P6, FHP6, FP6) it was found that after light absorption the pyropheophorbide a chromophores in all three compounds undergo very efficient energy transfer as well as partly excitonic interactions. The last process limits the potential of the compounds to generate cyctotoxic singlet oxygen under illumination. In the molecule FP6 a fast photoinduced electron transfer process from pyropheophorbide a to the fullerene moiety has been observed additionally. FP6 is inapplicable for PDT but this molecule can be considered as a combination of a light-harvesting system consisting of several separate pyropheophorbide a molecules and a charge-separating center. Furthermore the photosensitizing capabilities of water-soluble polymer conjugates of zinc protoporphyrin (ZnPP) as novel compounds for photodynamic therapy against solid tumors have been investigated. Pegylated ZnPP (PEG-ZnPP) forms micellar aggregates in solution whereas the hydrophobic ZnPP headgroups undergo strong excitonic interactions under illumination. This leads to suppression of singlet oxygen generation in aqueous solution. For a styrene-maleic acid copolymer incorporating ZnPP in a non-covalent fashion (SMA-ZnPP) similar results have been obtained. In-vitro experiments showed that the polymeric micelle is liberated after tumor cell uptake and ZnPP is released in monomeric form. Under illumination SMA-ZnPP generates strong phototoxicity. Polymer carrier-photosensitizer complexes will allow the development of more efficient PDT treatments under the precondition that the intramolecular transfer processes among photosensitizing molecules are selectively manipulated through the carrier system and therefore beneficially utilized.
|
382 |
High-field EPR and ENDOR spectroscopy for proton-coupled electron transfer investigations in E.coli ribonucleotide reductase / Hochfeld EPR und ENDOR Untersuchungen für den Protonen gekoppelten Elektronentransfer in der E.coli RibonukleotidreduktaseArgirevic, Tomislav 17 November 2011 (has links)
No description available.
|
383 |
Methanophenazin: Strukturaufklärung und Totalsynthese eines neuartigen Cofaktors aus methanogenen Archaea / Methanophenazine: Structure and Total Synthesis of a New Co-factor from Methanogenic ArchaeaTietze, Mario 02 November 2000 (has links)
No description available.
|
384 |
In vitro Studies of Improvement in Treatment Efficiency of Photodynamic Therapy of Cancers through Near-Infrared/Bioluminescent ActivationLuo, Ting 22 May 2015 (has links)
Cancer is a leading cause of death that affects millions of people across the globe each year. Photodynamic therapy (PDT) is a relatively new treatment approach for cancer in which anticancer drugs are activated by light at an appropriate wavelength to generate highly cytotoxic reactive oxygen species (ROS) and achieve tumor destruction. Compared with conventional chemo- and radiotherapy, PDT can be performed with minimal invasiveness, local targeting and reduced side effects. However, most of the currently available PDT drugs mainly absorb in the visible part of the spectrum, where light penetration depth into human tissues is very limited. Therefore, increasing the treatment depth of PDT has been considered to be an important approach to improve the effectiveness of PDT for treating larger and thicker tumor masses. In this thesis, we present our investigation into the potential of two-photon activated PDT (2-γ PDT), combination therapy of PDT and chemotherapy, and bioluminescence-activated PDT as a means to increase the treatment depth of this modality.
In 2-γ PDT, the photosensitizing agents are activated through simultaneous absorption of two photons. This approach allows the use of near-infrared (NIR) light that can penetrate deeper into tissues and thus, has the potential of treating deep-seated tumors and reducing side effects, while the non-linear nature of two-photon excitation (TPE) may improve tumor targeting. We have evaluated the PDT efficacy of a second-generation photosensitizer derived from chlorophyll a, pyropheophorbide a methyl ester (MPPa), through both one- and two-photon activation. We observed that MPPa had high one-photon (1-γ PDT efficacy against both cisplatin-sensitive human cervical (HeLa) and cisplatin-resistant human lung (A549) and ovarian (NIH:OVCAR-3) cancer cells when activated by femtosecond (fs) laser pulses at 674 nm. At a low light dose of 0.06 J cm-2, the MPPa concentration required to produce a 50% cell killing effect (IC50) was determined to be 5.3 ± 0.3, 3.4 ± 0.3 and 3.6 ± 0.4 μM in HeLa, A549 and NIH:OVCAR-3 cells, respectively. More significantly, we also found that MPPa could be effectively activated at the optimal tissue-penetrating wavelength of 800 nm through TPE. At a light dose of 886 J cm-2, where no measurable photodamage was observed in the absence of MPPa, the IC50 values were measured to be 4.1 ± 0.3, 9.6 ± 1.0 and 1.6 ± 0.3 μM in HeLa, A549 and NIH:OVCAR-3 cells, respectively. We obtained corresponding LD50 (the light dose required to produce a 50% killing effect) values of 576 ± 13, 478 ± 18 and 360 ± 16 J cm-2 for 10 μM MPPa, which were approximately 3-5 times lower than the published 2-γ LD50 of Visudyne® and 20-30 times lower than that of Photofrin®. These results indicate that MPPa may serve as a photosensitizer for both 1- and 2-γ activated PDT treatment of difficult-to-treat tumors by conventional therapies.
Indocyanine green (ICG), a dye having an absorption maximum near 800 nm, has been considered to be a potential NIR PDT agent. However, the PDT efficacy of ICG has been found to be very limited probably due to the low yield of cytotoxic ROS. In the present work, we have evaluated the combination effects of ICG-mediated PDT with conventional chemotherapy mediated by two types of chemotherapeutic drugs, namely the type II topoisomerase (TOPII) poisons etoposide (VP-16)/teniposide (VM-26) and the platinum-based drugs cisplatin (CDDP)/oxaliplatin (OXP). Synergistic enhancement of cytotoxicity and increased yields of DNA double strand breaks (DSBs) were observed in HeLa, A549 and NIH:OVCAR-3 cancer cells treated with the combination of ICG-PDT and VP-16. The presence of VP-16 during the laser irradiation process was found to be critical for producing a synergistic effect. An electron-transfer-based mechanism, in which ICG could increase the yield of highly cytotoxic VP-16 metabolites, was proposed for the observed synergistic effects, although direct spectroscopic detection of the reaction products was found to be very challenging. Moreover, we observed a much lower degree of synergy in the human normal fibroblast GM05757 cells than that in the three cancer cell lines investigated. Synergistic effects were also observed in A549 cells treated with the combination of ICG-PDT and VM-26 (i.e. an analog of VP-16). Furthermore, the combination of low-dose CDDP/OXP and ICG-PDT was demonstrated to produce an additive or synergistic effect in selected cancer cell lines. These preliminary results suggest that the combination of ICG-PDT with VP-16/VM-26 or CDDP/OXP chemotherapy may offer the advantages of enhancing the therapeutic effectiveness of ICG-PDT and lowering the side effects associated with the chemotherapeutic drugs.
Bioluminescence, the generation of light in living organisms through chemical reactions, has been explored as an internal light source for PDT in recent years. This approach, in principle, does not suffer from the limited tissue penetration depth of light. In the present project, we have evaluated the effectiveness of luminol bioluminescence in activating the porphyrin photosensitizers meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TPPS4) and Fe(III) meso-tetra(4-sulfonatophenyl)porphine chloride (FeTPPS). The combination treatment induced significant killing of HeLa cells, while additive effects were observed in two normal human fibroblast cell lines (GM05757 and MRC-5). Our observations indicate that bioluminescence of luminol may generate sufficient light for intracellular activation of PDT sensitizers. Furthermore, the combination treatment may have intrinsic selectivity towards cancerous tissues.
In summary, we have demonstrated effective killing of cancer cells by MPPa-mediated 1- and 2-γ PDT, combination of ICG-PDT and VP-16/VM-26 or CDDP/OXP chemotherapy, and bioluminescence of luminol activated PDT mediated by TPPS4/FeTPPS. These positive preliminary results indicate that all these three approaches have the potential of increasing the treatment depth of PDT and facilitating the development of more effective PDT treatment strategies.
|
385 |
Excited state dynamics of carotenoids in solution and proteins / Excited state dynamics of carotenoids in solution and proteinsCHÁBERA, Pavel January 2010 (has links)
Time resolved spectroscopy is one of the crucial methods used to study processes on molecular level in biological systems. It is useful especially for monitoring fast processes that take a place in photosynthetic apparatus of photosynthetic organisms, such as electron and energy transfer. The integral parts of photosynthetic apparatus are carotenoids, whose role in the photosynthetic apparatus is not as well explored as it is for chlorophylls. It was proved that carotenoids actively participate in energy transfer processes in photosynthetic antennas. They have a crucial role in protection against excess energy damage. They are also electron donors in both antennas and reaction centers. The fact that photo-physical properties of carotenoids are much different from properties of others organic pigments, complicates studies of their functions in photosynthesis as well as in other biological systems. This thesis employs advanced methods of femtosecond spectroscopy to obtain more information about carotenoid functions in some biological systems and in solution with special focus on carotenoids containing carbonyl group.
|
386 |
Production et stockage d'énergie : de la DSSC au photo-accumulateur / Energy production and storage : from DSSC to a photo-accumulatorCisneros, Robin 25 September 2015 (has links)
L’objectif de ce travail a été de mettre en place un système original capable de produire et stocker l’énergie à partir de la lumière dans un dispositif unique. Pour ce faire, nous avons choisi d’adapter l’électrode photo-sensible d’une DSSC sur un système d’accumulateur électrochimique. La première partie de ce travail a été de mettre en place la technique de spectroscopie EIS-λ, basée sur la spectroscopie d’impédance électrochimique couplée à un balayage en longueur d’onde de la lumière incidente. L’objectif de cette mesure est d’identifier et de quantifier les différents mécanismes de transfert électroniques, photo-dépendant ou non, ayant lieu à la surface de l’électrode photo-sensible, ainsi que les processus de désactivation des états excités des sensibilisateurs. Nous nous sommes ensuite penchés sur la recherche des conditions optimales d’utilisation de deux coadsorbants — l’acide bismethoxyphenyl phosphinique ou BMPP et l’acide chenodesoxycholique ou CDCA — avec le sensibilisateur de référence N719. Nous avons également quantifié leurs activités shield et anti-π-stacking grâce à la technique EIS-λ. Nous avons ainsi réalisé une DSSC présentant un rendement de photo-conversion de 8,3% en utilisant le co-adsorbant BMPP dans un ratio [co-ads]/[S] = 1, contre 7,2% dans les conditions de référence — avec le coadsorbant CDCA utilisé dans un ratio [co-ads]/[S] = 10. Par la suite, nous avons imaginé et synthétisé trois complexes de ruthénium hydrophiles originaux dont nous avons testé le pouvoir de photo-conversion dans des DSSC à électrolyte 100% aqueux, en présence des co-adsorbants sélectionnés. Ces systèmes ont permis de dépasser le pouvoir de photo-conversion du sensibilisateur N719, dans l’eau, avec un rendement maximal obtenu de 1,31%. Enfin, nous avons sélectionné la meilleure combinaison sensibilisateur / co-adsorbant afin de réaliser une électrode photo-sensible que nous avons implémentée dans un système original d’accumulateur électrochimique à base d’électrolytes aqueux. Le système ainsi mis en place constitue aujourd’hui le premier dispositif fonctionnel d’accumulateur 100% aqueux photo-rechargeable à partir d’une électrode mésoporeuse photo-sensibilisée / The aim of this work was to imagine and to develop a new system able to produce and store energy from sunlight in a single device. For this purpose, the photo-sensitive electrode of a DSSC has been adapted to an electrochemical accumulator. The first part of this work was to develop a new spectroscopic technique, called EIS-λ and based on electrochemical impedance spectroscopy combined to incident light wavelength sweep. This technique has proved its capacity to identify and quantify the different mechanisms of electron transfer over the surface of the semiconducting material and their dependency to incident wavelength, together with the various deactivation processes of the excited state of the sensitizer. Then, we investigated the best conditions to use two different co-adsorbents — namely bis-methoxyphenylphosphinic acid, or BMPP, and chenodesoxycholic acid, or CDCA — with the reference sensitizer N719. The shield and anti-π-stacking activities of the two coadsorbents has been characterized using EIS-λ technique. DSSC with a photo-conversion yield of 8,3% has been prepared in the lab using BMPP in a ratio [co-ads]/[S] = 1 while reference conditions – namely with CDCA in a ratio [co-ads]/[S] = 10 — only gave 7,2%. Besides, we have designed and synthesized three original hydrophilic ruthenium complexes, then tested their photo-conversion properties in DSSC with 100% aqueous electrolytes. Such systems, with the selected co-adsorbents, allowed 1,31% photo-conversion yield to be obtained, which is two times larger than the efficiency exhibited by N719 in the same electrolyte conditions. Finally the best combination sensitizer / co-adsorbent has been selected to achieve a photo-sensitive electrode which has been implemented in an original electrochemical accumulator with aqueous electrolytes. This system represents the first functional device of a 100% aqueous accumulator, which is photo-reloadable with a photosensitized mesoporous electrode
|
387 |
Elaboration d'édifices multi-chromophoriques à base de DPPs et BODIPYs : vers des applications photovoltaïques / Elaboration of multi-chromophoric scaffolds based on DPPs and BODIPYs : towards photovoltaic applicationsHeyer, Elodie 18 July 2014 (has links)
Les travaux réalisés au cours de cette thèse ont consisté en l’élaboration d’édifices multi-chromophoriques pour des applications en cellules solaires organiques. La conception de ces nouveaux matériaux a été guidée par trois paramètres : (i) l’augmentation de la planéité pour une meilleure organisation intermoléculaire ; (ii) la modulation de la fenêtre spectrale d’absorption pour capter un maximum de photons ; (iii) l’enrichissement électronique des matériaux pour faciliter la séparation des charges. Notre choix s’est porté sur les hydrocarbures aromatiques polycycliques, de part leurs propriétés structurantes bien connues. La synthèse du 2-bromodibenzo[g,p]chrysène a été réalisée par des réactions de type Scholl intramoléculaires, puis sa dérivatisation a permis de synthétiser des matériaux correspondants. La mono-fonctionnalisation d’un synthon benzo[1,2-b:3,4-b’:5,6-b’’]trithiophène a également été effectuée. Des BODIPYs dithiényles α-fusionnés ont ensuite été synthétisés selon une procédure originale de couplages oxydants intramoléculaires, permettant d’obtenir des composés plans, fonctionnalisés et fonctionnalisables, tout en contournant la chimie contraignante du pyrrole. L’obtention de dyades et triades à base de DPPs, de BODIPY et de triphénylamines ont permis d’obtenir des composés panchromatiques et d’étudier les phénomènes d’extinction de la fluorescence par spectroscopies statiques et ultrarapides. Un dernier projet a porté sur des édifices de type D-A-D à base de BODIPYs et amines aromatiques tertiaires. / The projects developed in this thesis consisted in the elaboration of multi-chromophoric scaffolds towards applications in bulk heterojunction organic solar cells. The design of the materials was guided by three main parameters: (i) the increase of the planarity to observe a better intermolecular organization; (ii) the broadening of the spectral absorption window in order to maximize the number of absorbed photons; (iii) the increase of the electronic density in order to facilitate the charge separation. First, the structural properties of mono-functionalized polycyclic aromatic hydrocarbons (PAH) were investigated with the synthesis of 2-bromodibenzo[g,p]chrysene by Scholl type reactions, followed by its functionalization and the development of related materials. Then we also focused on another PAH: benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene and its subsequent functionalization. α-Fused dithienyl BODIPYs were then built according to an original procedure based on intramolecular oxidative coupling reactions. Substituted and functionalizable planar compounds were obtained bypassing the instability of the pyrrole ring chemistry. Subsequently, the elaboration of dyads and triads based on DPPs, BODIPY and triphenylamines led to the examination of the fluorescence quenching process by static and ultrafast spectroscopies. A last project consisted in the study and applications of D-A-D edifices based on BODIPYs and ternary aromatic amines.
|
388 |
Laserspektroskopie an Photosystem II Zur Proton-Elektron-Kopplung bei Tyrosin Z und über die Natur der Chlorophyll a Entität P680 / Laser flash spectroscopy of photosystem II The proton-electron-coupling around tyrosine Z and the nature of the chlorophyll a entity P680Ahlbrink, Ralf 12 December 2002 (has links)
"Laser flash spectroscopy of photosystem II"
Photosystem II (PS II) of plants and cyanobacteria oxidizes water in a light-powered reaction. Thereby, this protein is the ultimate source of the atmospheric oxygen.
The capacity to oxidize water is owed to two properties of PS II: (i) The midpoint potential of the oxidizing chlorophyll moiety is increased by 0.6 V compared to photosystem I or photochemical reaction centers of anoxygenic bacteria, and (ii) the energy requirements of the four steps needed for the tetravalent oxidation of water are adapted to the energy of red light quanta.
This thesis deals with two particular aspects, namely:
1. The coupling of the electron transfer from tyrosine Z (YZ) to the primary donor (P680+) to proton transfer, and an inquiry on the role of a positive charge on YZox (plus base cluster) in increasing the oxidizing potential at the catalytic site.
2. The localization of the electron hole, P680+, among the excitonically coupled four inner chlorophyll a molecules, and an estimation of the midpoint potential differences between them.
Electron-proton-coupling by YZ
This study was carried out with PS II core complexes from spinach or pea with a deactivated (removed) manganese cluster. The reduction of P680+ was investigated as a function of pH by detecting the laser flash induced absorption changes with nanosecond resolution. Two kinetic components were found with different pH-dependence and activation energies. The alteration of kinetic parameters by H/D isotope substitutions or by addition of divalent cations implied two different types of YZ-oxidation: At acidic pH the electron transfer was coupled with proton transfer, whereas in the alkaline region it was more rapid and no longer controlled by proton transfer. The conversion between both mechanisms occured at pH 7.4. This value corresponds either to the apparent pK of YZ itself (i.e. of the hydroxy group of the phenol ring) or to the pK of an acid-base-cluster, which includes YZ. Independent measurements of pH-transients by following the absorption changes of hydrophilic proton indicators corroborated this notion. The data were interpreted as indicating that the phenolic proton of YZ was released into the medium at acidic, but not at alkaline pH.
The electron transfer and proton release characteristics of intact, oxygen-evolving PS II resembled those in deactivated samples kept at alkaline pH. We concluded that the electron transfer from YZ to P680+ in the native system was not coupled with proton transfer into the bulk. This has shed doubt on a popular hypothesis on the role of YZ as 'hydrogen abstractor' from bound water. On the other hand, the energetic constraints of water oxidation could be eased by the positive upcharging during oxidation of YZox plus its base cluster.
On the localization of the electron hole of P680+
Photooxidation of PS II oxidizes the set of four innermost chlorophyll a molecules giving rise to the only spectroscopically defined species P680+. The deconvolution of difference spectra into bands of pigments is ambiguous. By using photoselective excitation of antennae, i.e. chl a molecules with site specific energies at the long wavelength border of the mean Qy-band, and by polarized detection, it was possible to tag P680+QA-/P680QA and 3P680/P680 difference spectra with a further parameter, the (wavelength-dependent) anisotropy r. Results obtained at liquid nitrogen temperature (77 K) can be clearly interpreted in terms of two chl a monomer bands. The two main components of the P680+QA-/P680QA difference spectrum were marked by two distinct values of the anisotropy and could be interpreted in a straightforward manner: the bleaching of a band at 675 nm belonging to the charged species (chl a+) and an electrochromic blue-shift of a nearby chl a from 684 to 682 nm. The main bleaching band of the 3P680/P680 spectrum (at 77 K) can be apparently attributed to a third (or several) chl a component(s).
The analysis of the P680+QA-/P680QA spectrum at cryogenic temperature is compatible with monomeric chl a bands. On the other hand, one could assume a system of excitonically coupled core pigments, as it was recently introduced in the literature on the basis of energy transfer studies ('multimer model'). However, in view of the clear indications for an electrochromic band shift and the location of the bleaching band, which absorbs in a wavelength region of monomeric chl a, one assumption of the 'multimer model' should be questioned. Presumably, the excitonic couplings are rather weak, in particular between each of the two central chl a-molecules (PA/PB) and its respective accessory chl a (BA/BB), because of (i) the distances and (ii) different site energies of the monomeric chromophores.
At room temperature, the absorption difference and anisotropy spectra of P680+QA-/P680QA were clearly altered. The anisotropy data indicated that the changes could no longer exclusively be ascribed to thermal broadening of individual bands. The localization of the positive charge on one pigment, analogous to the situation at 77 K, was now unlikely. Hence, the midpoint potential differences between the inner four chlorophyll a molecules were small and were estimated as approximately 15 meV.
|
389 |
Insights into the ATP-dependent reductive activation of the Corrinoid/Iron-Sulfur Protein of Carboxydothermus hydrogenoformansHennig, Sandra Elisabeth 19 June 2014 (has links)
Die Verknüpfung einer exergonischen mit einer endergonischen Reaktion zur Ermöglichung der letzteren ist eine in biologischen Systemen weit verbreitete Strategie. Energetisch benachteiligte Elektronenübertragungsreaktionen im Rahmen der reduktiven Aktivierung von Nitrogenasen, Radikal-abhängigen β,α-Dehydratasen, der zu diesen verwandten Benzoyl-CoA-Reduktasen und diversen Cobalamin-abhängigen Methyltransferasen sind gekoppelt an die Hydrolyse von ATP. Der Methylgruppentransfer des reduktiven Acetyl-CoA-Weges von Carboxydothermus hydrogenoformans erfordert den Co(I)-Zustand des Corrinoid/Eisen-Schwefel Proteins (CoFeSP). Um diese superreduzierte Form nach einer oxidativen Inaktivierung zu regenerieren ist ein „Reparaturmechanismus“ erforderlich. Ein offenes Leseraster (orf7), welches möglicherweise für eine reduktive Aktivase von Corrinoid Enzymen (RACE) kodiert, wurde in dem Gencluster der am reduktiven Acetyl-CoA-Weg beteiligten Proteine entdeckt. Im Rahmen dieser Arbeit wurde dieses potenzielle RACE Protein biochemisch und strukturell charakterisiert und die ATP-abhängige reduktive Aktivierung von CoFeSP untersucht. Auf Grundlage der in dieser Arbeit gewonnenen Ergebnisse wurde ein Mechanismus für die ATP-abhängige Aktivierung entworfen. Dieser gibt Einblicke wie die durch ATP-Hydrolyse bereitgestellte Energie einen energetisch ungünstigen Elektronentransfer ermöglichen kann. Hierzu kombiniert RACo das Ausgleichen von Bindungsenergien mit Modulationen am Elektronenakzeptor. Eine vergleichbare Strategie wurde bisher in keinem anderen ATP-abhängigen Elektronenübertragungssystem wie dem von Nitrogenasen, Radikal-abhängigen β,α-Dehydratasen oder Benzoyl-CoA-Reduktasen beobachtet und könnte ein für RACE Proteine allgemein gültige Eigenschaft darstellen. / The principle of coupling an exergonic to an endergonic reaction to enable the latter is a widespread strategy in biological systems. Unfavoured electron transfer reactions in the reductive activation of nitrogenases, radical-dependent β,α-dehydratases and the related benzoyl- CoA reductases, as well as different cobalamin-dependent methyltransferases are coupled to the hydrolysis of ATP. The reductive acetyl-CoA pathway of Carboxydothermus hydrogenoformans relies on the superreduced Co(I)-state of the corrinoid/iron-sulfur protein (CoFeSP) that requires a “repair mechanism” in case of incidental oxidation. An open reading frame (orf7) coding for a putative reductive activase of corrinoid enzymes (RACE) was discovered in the gene cluster of proteins involved in the reductive acetyl-CoA pathway. In this work, this putative RACE protein was biochemically and structurally characterised and the ATP-dependent reductive activation of CoFeSP was investigated. Based on the results of this study, a mechanism for the ATP-dependent reactivation of CoFeSP was deduced providing insights into how the energy provided by ATP could trigger this unfavourable electron transfer. The reductive activator of CoFeSP combines balance of binding energies and modulations of the electron acceptor to promote the uphill electron transfer to CoFeSP. A comparable strategy has not been observed in other ATP-dependent electron transfer systems like nitrogenases, radical-dependent β,α-dehydratases and benzoyl- CoA reductases and could be a universal feature of RACE proteins.
|
390 |
Energetic and Microscopic Characterization of the Primary Electron Transfer Reaction in the (6-4) Photolyase Repair ReactionOßwald, Mara 17 April 2024 (has links)
Wird DNA mit UV-Licht bestrahlt, kommt es zur Bildung von Photoschäden, die zu Zelltod oder Krebs führen können. In dieser Arbeit wird die primäre Elektronentransferreaktion des lichtaktivierten Reparaturprozesses des (6-4)-Schadens in Drosophila melanogaster charakterisiert. Der katalytische Reparaturzyklus wird durch das Flavoprotein (6-4)-Photolyase (PL) realisiert. Der Elektronentransfer (ET) vom Flavin-Adenin-Dinukleotid (FADH⁻) Kofaktor zum Schaden initiiert die molekularen Umlagerungen. Diese Arbeit charakterisiert die primäre ET Reaktion mithilfe von molekulardynamischen Langzeitsimulationen (µs) in Kombination mit Quantenmechanik/Molekularmechanik-Simulationen. Ab initio lokale Coupled-Cluster- und Dichtefunktionaltheorierechnungen wurden angewendet, um die relative Energetik von lokal angeregten und Ladungstransferzuständen des (6-4)-Reparaturkomplexes zu charakterisieren. Es zeigt sich, dass die Reduktion des (6-4)-Schadens durch einen Ladungstransferzustand ermöglicht wird an dem die Adeninstruktur des FADH⁻ -Kofaktors beteiligt ist. Über die Simulationen wird ein mikroskopisches Bild der Reaktionskoordinate der Elektronentransferreaktion im Marcusbild entwickelt. Diese ist nicht vollständig durch parabolische freie Energiekurven beschrieben sondern wird, durch Wechselwirkungen in der aktiven Tasche, ein Multiminima-Reaktionspfad ausgebildet. Hierbei hat die Rotation der Seitenkette der benachbarten, geladenen Aminosäure Lys246 dominanten Einfluss. Dies legt nahe, dass die primäre ET Reaktion der (6-4) Schadensreparatur, einen vom Adenin unterstützten ET Weg von der PL zur 5’ Seite des Schadens nimmt. Dieser Prozess wird durch benachbarte Aminosäuren und einer Stärkung der Wasserstoffbrücken mit Wassermolekülen stabilisiert. Die Ergebnisse dieser Arbeit zeigen, dass ET-Reaktionen in komplexen enzymatischen Systemen nicht im Kontinuumsbild von ET beschrieben werden können, da lokale Wechselwirkungen drastischen Einfluss auf die ET Reaktionen haben. / UV-light irradiation of DNA leads to the formation of photolesions that can cause cell death and cancer. This thesis aims at the characterization of the primary electron transfer (ET) reaction in the photoactivated repair process of the (6-4) lesion in Drosophila melanogaster. The catalytic repair cycle is realized by a flavoprotein called photolyase (PL). The ET from the fully reduced flavin-adenine-dinucleotide (FADH⁻) cofactor of the PL to the lesion initiates molecular rearrangements. In this thesis fluctuation properties of the enzyme environment on the excited states are considered by conducting long-time (µs) molecular dynamics simulations combined with extensive quantum mechanical/molecular mechanical simulations. Ab initio local coupled cluster simulations and density functional theory are applied to characterize the relative energetics of locally excited and charge transfer (CT) states in the (6-4) lesion repair complex. Reduction of the (6-4) lesion is found to be enabled by a CT state involving the adenine moiety of the FADH⁻ cofactor. Microscopic characterization of a Marcus-type free energy reaction coordinate reveals that it cannot be fully described by parabolic free energy curves. Specifically, rotation of the side chain of nearby charged amino acid Lys246 imposes a double-well character on the potential energy surface along the reaction coordinate of the ET. For the ET reaction triggering the catalytic (6-4) lesion repair, the findings of this thesis suggest an ET pathway to the 5’ side of the (6-4) lesion mediated by the adenine moiety. The process is stabilized by neighboring amino acids and a strengthening of hydrogen bonds with water molecules. The presented results demonstrate that ET reactions in complex enzymatic systems cannot be described within the continuum ET picture, as local interactions drastically tune the ET reaction.
|
Page generated in 0.1234 seconds