Spelling suggestions: "subject:"embryonic tem well"" "subject:"embryonic tem cell""
51 |
Caracterização das Células-Tronco/Progenitoras Hematopoéticas obtidas de Células-Tronco Embrionárias Humanas In Vitro em Sistema de Co-Cultivo com Fibroblastos de Embriões Murinos. / Characterization of Hematopoietic Stem/Progenitor Cells Obtained In Vitro from Human Embryonic Stem Cells in Co-Culture System with Mouse Embryonic Fibroblasts.Everton de Brito Oliveira Costa 04 June 2012 (has links)
A hematopoese tem sido bem descrita em modelos murinos nas últimas décadas, contudo, trabalhos demonstrando os mecanismos da hematopoese em humanos ainda são escassos. A derivação da primeira linhagem de células-tronco embrionárias humanas (CTEhs) em 1998, gerou novas perspectivas tanto para o estudo da hematopoese na tentativa de mimetizar o que ocorre naturalmente durante o desenvolvimento embrionário, quanto para a aplicação clínica das células hematopoéticas obtidas a partir da diferenciação dessas células. Contudo, apesar de inúmeros trabalhos terem demonstradoa obtenção de células hematopoéticas a partir de CTEhs, os protocolos têm gerado quantidades variáveis de células, com baixa eficiência e com propriedades funcionais de células primitivas. Desse modo, este trabalho procurou estabelecer um modelo próprio de diferenciação de CTEhs-H1 em células progenitoras hematopoéticas para que estas pudessem ser melhor caracterizadas e obtidas de forma mais eficiente. Para isto, foi desenvolvido um sistema de diferenciação baseado no co-cultivo da linhagem de CTEh-H1 com fibroblastos de embrião de camundongo (MEFs), em meio de diferenciação suplementado soro fetal bovino (SFB) e citocinas e fatores de crescimento hematopoéticos em baixas concentrações. Como resultado, o desenvolvimento do presente trabalho permitiu o estabelecimento de um método para geração de populações mistas de células enriquecidas em CPHs positivas para o marcador CD45, o qual mostrou ser coexpresso com outros marcadores hematopoéticos (CD31, CD43, CD71 e CD38), e células hematopoéticas maduras positivas para marcadores mielóide-específicos (235a, CD14, CD15, CD16) e com características morfológicas típicas. Foi demonstrado que as células obtidas expressavam genes relativos ao sistema hematopoético (CD45, CD31, runx1, tal1, lmo2, prom1, CD34 e notch1), e possuíam potencial clonogênico in vitro da ordem de 1/574 células plaqueadas. Em adição, corroboramos os achados de que as células hematopoéticas apresentam duas origens distintas: a partir do endotelio hemogênico e a partir de células com propriedades hemangioblásticas independentes do endotélio hemogênico. / Hematopoiesis has been well described in murine models in recent decades, however, studies demonstrating the mechanisms of hematopoiesis in humans are still scarce. The first human embryonic stem cells line (hESCs) derived in 1998, has generated new perspectives about the study of hematopoiesis as in attempting to mimic what naturally occurs during embryonic development, as for clinical application of hematopoietic cells obtained from the differentiation of these cells. However, although numerous studies have shown the production of hematopoietic cells derived from hESCs, the protocols have generated varying quantities of cells with low efficiency and functional properties of primitive stem cells. Thus, this study sought to establish our own model for hESC-H1 differentiation in hematopoietic progenitor cells so that they could be better characterized and obtained more efficiently. For this way, we developed a differentiation system based on co-culture of hESC-H1 line with inactivated mouse embryonic fibroblasts (MEFs) in differentiation medium supplemented with fetal calf serum (FCS) and cytokines and hematopoietic growth factors in low concentrations. As a result, the development of this study allowed the establishment of a method for generation of mixed population of cells enriched in hematopoietic progenitor cells positive for the marker CD45, which proved to be co-expressed with other hematopoietic markers (CD31, CD43, CD71 and CD38), and mature hematopoietic cells positive for myeloid-specific markers (235a, CD14, CD15, CD16) and morphological characteristics typical. It was shown that these cells expressed genes related to the hematopoietic system (CD45, CD31, runx1, TAL1, LMO2, prom1, CD34 and NOTCH1), and had clonogenic potential in vitro of 1/574 plated cells. In addition, we corroborate the findings that hematopoietic cells have two distinct origins: they can arise as from an hemogenic endothelium as from cells with hemangioblastic properties by an hemogenic endothelium-independent way.
|
52 |
Human Pluripotent Stem Cell-Derived Tumor Model Uncovers the Embryonic Stem Cell Signature as a Key Driver in Atypical Teratoid/Rhabdoid Tumor / ヒトiPS細胞由来脳腫瘍モデルによる非定型奇形腫様/ラブドイド腫瘍発生の主要因子となる胚性幹細胞様遺伝子発現の同定Terada, Yukinori 23 July 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21999号 / 医博第4513号 / 新制||医||1038(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 高橋 淳, 教授 井上 治久, 教授 滝田 順子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
53 |
SIRT1 DEFICIENCY COMPROMISES MOUSE EMBRYONIC STEM CELL DIFFERENTIATION, AND EMBRYONIC AND ADULT HEMATOPOIESIS IN THE MOUSEOu, Xuan 16 March 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / SIRT1 (Sirtuin 1) is a founding member of a family of seven proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1-/- mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1-/- mouse embryonic stem (mES) cells in vitro, and hematopoietic progenitors in SIRT1+/+, SIRT1+/-, and SIRT1-/- mice. SIRT1-/- ES cells exhibited markedly delayed/immature formation of blast colony-forming cells (BL-CFCs). When individual blast colonies were analyzed for hematopoietic and endothelial potential, replated SIRT1-/- BL-CFC possessed limited hematopoietic potential, whereas endothelial potential was essentially unaltered. The ability of SIRT1-/- ES cells to form primitive erythroid progenitors was not only delayed but greatly decreased. Moreover, after differentiation of SIRT1-/- mES cells, there were also significant decreases in granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5, decreased β-H1 globin, β-major globin, and Scl gene expression and reduced activation of the Erk1/2 pathway upon SIRT1-/- ES cell commitment. Reintroduction of WT SIRT1 into SIRT1-/- cells partially rescued the primitive erythroid progenitor formation of SIRT1-/- cells and the expression of hemoglobin genes, Hbb-bh1 and Hbb-b1, suggesting that the defect of hematopoietic commitment is due to deletion of SIRT1, and not to genetic drifting of SIRT1-/- cells. To confirm the requirement for SIRT1 for normal development of hematopoietic progenitor cells, we assessed embryonic and adult hematopoiesis in SIRT1+/+, SIRT1+/- and SIRT1-/- mice. Yolk sacs from SIRT1 mutant embryos generated fewer primitive erythroid precursors compared to wild-type (WT) and heterozygous mice. Moreover, knockout of SIRT1 decreased primary bone marrow hematopoietic progenitor cells (HPCs) in 5 week and 12 month old mice, which was especially notable at lower (5%) O2 tension. In addition these progenitors survived less well in vitro under conditions of delayed growth factor addition. Taken together, these results demonstrate that SIRT1 plays a role in ES cell hematopoietic differentiation and mouse hematopoiesis.
|
54 |
The support of undifferentiated human embryonic stem cell lines by different matricesKhadun, Shalinee January 2014 (has links)
The future of human embryonic stem cell (hESC) research with regards to their applicability in a therapeutic setting, relies on the development and standardisation of consistent and robust methods to demonstrate their defining characteristics; their pluripotent ability to form all three germ layers and their capacity for self-renewal. Although much research has been carried out to investigate new methods of culturing hESCs, many of these studies have not robustly concluded the impact of prolonged culture on genetic and genomic stability nor have they examined in any comparative detail the impact of the culture conditions such as differences in feeders used or the media composition in which the stem cells are cultured in. The aim of this thesis therefore was to investigate and evaluate methods for improving the uniform and robust culture and characterisation of hESCs over prolonged periods in culture. Four hESC lines ( RH5, HUES9, SHEF1 and NCL5) were chosen on the basis that they had not previously been well characterised and therefore could potentially benefit the wider stem cell community by increasing diversity, rather than continue to use the already small subset of well publicised lines. The RH5, HUES9, SHEF1 and NCL5 cells were subjected to long term passaging using recombinant enzyme TrypLE™ Express, on human feeders, mouse feeders and feeder free matrix Matrigel in combination with defined media mTeSR1, for uniform scale up. Changes in characteristic stem cell surface markers were compared using two techniques; flow cytometry and quantitative in situ fluorescence microscopy. Genomic stability was assessed by real time PCR. Chromosomal integrity was monitored using array genomic hybridisation (aCGH). Array genomic hybridisation analysis of cells cultured for 20 passages by enzymatic passaging revealed changes in copy number variations in all the stem cell lines. Aberrations on chromosomes 12, 17 and 20, appeared most commonly as a result of long term culture. Although no significant differences were seen between hESCs cultured on mouse and human feeders, cultures on Matrigel showed fewer detected chromosomal aberrations. Expression of cell surface stemness markers SSEA3, SSEA4, TRA1-60 and TRA1-81 were maintained by hESC cultured on all matrices and confirmed by the use of flow cytometry and high throughput quantitative immunofluorescence imaging using the TissueFaxs™ cell analysis microscopy system. In depth imaging revealed subtle but important differences in the way in which hESCs attach and proliferate on different matrices. Genetic profiling of each of the stem cell lines using Taqman Low density array cards to assess the expression of 96 genes by Real Time PCR, demonstrated the continued expression of stemness genes 21 at late passage, and low level expression of differentiation genes, inherent to particular stem cell lines. Although both mouse and human feeders and Matrigel support the undifferentiated growth of hESCs, subtle differences from the hESCs were seen as a result of their use, most obviously, changes in morphology and how they proliferate. This was further explored in the stem cell line NCL5, as it demonstrated a readiness to adapt to new matrices, better chromosomal stability and higher expression of cell surface markers compared with the other hESC lines. Using in vitro differentiation assays to all three germ layers, NCL5 cultured to late passage (p+20) on human feeder iMRC5, mouse feeder iMEF and feeder free matrix Matrigel, demonstrated the ability to differentiate to ectoderm, endoderm and mesoderm progenitors after induction using three 7 day flat based directed differentiation protocols. Altered differentiation patterns were detected by Real Time PCR and TissueFaxs™ imaging and quantitative analysis, as a consequence of the prolonged culture on the specific matrices used. Such key findings allude to the strong influences of microenvironment and will help to improve the standardisation of in vitro differentiation assays. From these studies, chromosomal changes had no impact on NCL5 stem cell lines‘ ability to form progenitors, however small genetic instabilities may still play a role in terminal differentiation of germ lineage specific cell types. The findings of the programme of work described has led to the successful culture methods and characterisation testing validated in this project being incorporated into routine culture and banking of research grade hESCs at the UK Stem Cell Bank. These protocols will now be made more widely available and should assist stem cell researchers in adopting the most suitable and optimum conditions for culturing stem cells in the undifferentiated and stable state. With the huge surge in stem cell research over the past decade, the development of robust characterisation and culture methods will undoubtedly have significant impact on the exploitation of these cells for regenerative medicine and to assist with this a future aim of the stem cell bank will be to standardise methodologies for clinical grade banking.
|
55 |
Caracterização do papel das proteínas quinases C (PKCs) na proliferação e auto-renovação das células tronco embrionárias murinas / Characterization of the role of protein kinases C (PKC) in proliferation and self-renewal of murine embryonic stem cellsGaravello, Nicole Milaré 04 August 2011 (has links)
Células tronco embrionárias (CTE) são capazes de proliferar indefinidamente mantendo a sua pluripotência, isto é, a capacidade de se diferenciar em diversos tipos celulares perante estímulos adequados. Esse potencial tem sido intensamente estudado, de modo a permitir a utilização dessas células em terapias de reposição celular. Trabalhos anteriores demonstraram que as proteínas kinases C (PKC) são importantes moduladores moleculares de cascatas de sinalização que levam ao processo de proliferação e auto-renovação das CTE. Porém o papel exato das diferentes isoenzimas das PKCs ainda não foi elucidado. Isso ocorre porque a família das PKCs é composta por pelo menos dez isoenzimas e apenas, recentemente, desenvolveram-se moduladores específicos para as diferentes isoenzimas, o que permitirá estudar o papel específico dessas quinases. No presente trabalho verificamos que a ativação da PKCδ induziu a proliferação de CTE indiferenciadas sem induzir a diferenciação das mesmas. Para tentar elucidar as vias de sinalização mediadas pela PKCδ que levam à proliferação das CTE indiferenciadas realizamos estudos de fosfoproteômica o que possibilitou a identificação de potenciais alvos diretos e indiretos da PKCδ. Dentre os alvos identificados foram encontradas diversas proteínas relacionadas com proliferação, transcrição, tradução e resposta ao stress (chaperonas), contribuindo para a hipótese de que a ativação da PKCδ leva à proliferação das CTE indiferenciadas. Em diversos sistemas, a ativação da PKCδ leva à ativação da MAPK, em particular das ERK1/ 2, sendo essa via capaz de induzir a proliferação de diversas linhagens celulares. Identificamos diversas proteínas alvos da PKCδ, que interagem também com componentes da via das MAPKs. Desta forma, verificamos a influência da ativação da PKCδ na via das MAPKs. De fato, a ativação da PKCδ na linhagem de CTE murinas indiferenciadas, E14TG2a, ativou a MEK, ERK1/ 2 e o fator de transcrição ELK-1. Como estudos anteriores demonstraram que a inibição da ERK1/ 2 mantém CTE indiferenciadas e que a ativação desta via poderia levar à diferenciação de CTE, investigamos a cinética de ativação da ERK pela PKCδ. Demonstramos que a ativação da ERK pela PKCδ se da de modo transiente e que apesar da PKCδ não translocar para o núcleo, sua ativação induz a fosforilação e translocação nuclear da ERK, que atuará na fosforilação do fator de transcrição ELK-1. Desta forma, concluímos que a PKCδ induz a proliferação das CTE murinas indiferenciadas ativando transitoriamente a via das ERK1/ 2, que translocam para o núcleo fosforilando fatores de transcrição como a ELK1 e levando possivelmente ao aumento de proliferação dessas células. A ativação transiente das ERK1/ 2 pela PKCδ é importante para a auto-renovação das CTE. / Embryonic stem cells (ESC) are able of proliferating indefinitely maintaining their pluripotency, which is the capability to differentiate in different cell types upon appropriate stimuli. Pluripotency has been intensely investigated in order to allow the use of these cells in cellular replacement therapies. Previous work has demonstrated that the serine/ threonine kinases, such as, Protein kinases C (PKC) are important modulators of signaling cascades that lead to the process of proliferation and self-renewal of ESC. However, the exact role of the different PKC isoenzymes still remains to be elucidated. Due to the fact that the PKC family is composed of at least ten different isoenzymes and only recently isoenzyme specific modulators have been developed, which now allows the elucidation of these kinases roles. In the present work we verified that activation of PKCδ induced undifferentiated ESC have their proliferation rate increased. Trying to elucidate the signaling pathways mediated by PKCδ that lead to the proliferation increase we performed phosphoproteomic studies to identify potential PKCδ targets. Between the targets identified we found several proteins related with proliferation, protein transcription, translation and stress response (chaperones). These targets contributed to the hypothesis that PKCδ activation leads to undifferentiated ESC proliferation. In different cell lines, PKCδ activation leads to MAPK activation, through ERK1/ 2 activation, which are frequently involved with cellular proliferation. We also identified several targets of PKCδ that Interact with several components of MAPK`s signaling cascade. PKCδ activation in murine undifferentiated ESC line, E14TG2a, led to MEK, ERK1/ 2 and the transcription factor Elk-1 activation. Some articles demonstrate that the inhibition of ERK1/2 are responsible to maintains ESC undifferentiated and that it`s activation could lead to ESC differentiation. Analysing the kinetics of ERK activation in the ESC by PKCδ, we show that ERK activation was transient and despite the fact that PKCδ does not translocated to the nucleus upon activation, but induces ERK activation and it`s nuclear translocation, where ERK could phosphorylate the transcription factor Elk-1. In conclusion PKCδ induces undifferentiated murine ESC proliferation increase by a transient ERK activation and it`s nuclear translocation.
|
56 |
Caracterização da proteína quinase C Beta I nuclear em células tronco embrionárias / Characterization of protein kinase C beta I in embryonic stem cell nucleusBonatto, José Matheus Camargo 24 October 2014 (has links)
As proteína quinases C (PKC) pertencem à família das serina/treonina quinases, que vem sendo apontadas como importantes enzimas para os processos de proliferação e diferenciação das células tronco embrionárias (CTE), todavia, a função exata de cada isoforma dessa família ainda não está clara. Dados anteriores do nosso laboratório indicam que dentre as PKCs expressas em CTE, formas cataliticamente ativas da PKCβI são altamente expressas no núcleo das CTE murinas. Estas ao se diferenciarem expressam essa quinase no seu citoplasma ou deixam de expressar a mesma, e que a maioria dos alvos da PKCβI em CTE indiferenciada estão envolvidos em processos de regulação da transcrição de proteínas envolvidas em processos de proliferação/ diferenciação. Dando continuidade aos resultados anteriores do laboratório, no presente trabalho, com técnicas de proteômica e fosfoproteômica identificamos outros alvos nucleares da PKCβI em CTE indiferenciadas. Vimos que de fato inibindo-se a PKCβI diminuiu-se a fostorilação de fatores envolvidos com a indiferenciação das CTE. Dentre os alvos da PKCβI encontramos a proteína adaptadora, TIF1 que recruta proteínas remodeladoras de cromatina. Essa proteína é essencial para a manutenção do estado indiferenciado das CTE. In vitro a PKCβI foi capaz de fosforilar a TIF1β e inibindo-se a PKCβI por RNAi vimos uma diminuição na expressão da TIF1β e no fator de indiferenciação Nanog cuja expressão já foi demonstrada ser regulada pela TIF1β. Além disso vimos que inibindo-se a PKCβI com o peptídeo inibidor da PKCβI aumentou a expressão de proteínas reguladas pelo c-Myc. E que o RNAi para a PKCβI aumentou a expressão de proteínas que regulam a expressão do c-Myc. Não vimos nenhum efeito na fosforilação ou expressão do c-Myc após a inibição da PKCβI o que sugere que a PKCβI ative proteínas repressoras do c-Myc. Nossos estudos sugerem que a PKCβI regula a manutenção do estado indiferenciado das CTE regulando a expressão e atividade da Tif1β um possível alvo direto da PKCβI. Levando a modificações da cromatina e regulação da expressão de genes que mantém as CTE indiferenciadas. Outro ponto de regulação da PKCβI parece ser a nibição da atividade de c-Myc o que seria importante para a manutenção do estado indiferenciado visto que o c-Myc é um amplificador das vias de sinalização que mantém as células proliferando. Desta forma a PKCβI parece ter um papel central na regulação da expressão gênica de CTE à nível de modificações epigenéticas e a nível transcricional mantendo as CTE indiferenciadas. / The Protein kinase C (PKC) family of serine/treonine kinases, are being described as important enzymes for proliferation and diferentiation of embryonic stem cells (ESC), however, the exact function of the different isoenzymes of this family still is unclear. Previous data from our laboratory indicates that amongst the PKCs expressed in ESC, catalytically active forms of PKCβI are highly expressed in nucleus of murine ESC. When these cells differentiate this kinase can be found in the cytoplasm or not expressed at all, and that the majority of PKCβI targets in undifferentiated ESC are involved in the regulation of proteins involved in transcription of proteins involved in proliferation/ diferentiation. Continuing our previous work herewith using proteomics and phosphoproteomics techniques we identified other nuclear PKCβI targets in undifferentiated ESC. We indeed saw that inhibiting PKCβI decreased the phosphorylation of factors involved with maintainance of the undifferentiated state of ESC. Amongst the targets of PKCβI we found the adaptor protein, TIF1βI, that recruits cromatin remodeling proteins. This protein is essential for the maintenance of the undifferentiated state of ESC. In vitro PKCβI phosphorylated TIF1β and inhibiting PKCβI with RNAi decreased the expression of TIF1β and of the undifferentiation factor Nanog whose expression has been shown to be regulated by TIF1β. We also saw that inhibiting PKCβI with a peptide inhibitor increased the expression of proteins regulated by c-Myc, and that RNAi for PKCβI increased the expression of proteins that regulate the expression of c-Myc. We did not see any effect on the phosphorylation or expression of c-Myc after inhibition of PKCβI suggesting that PKCβI activates c-Myc repressor proteins. Our studies sugest that PKCβI regulates the maintenance of the undiferentiated state of ESC regulating the expression and activity of Tif1β a possibly a direct target of PKCβI, leading to chromatin modifications and regulation of genes that maintain ESC undiferentiated. Another form of regulation of PKCβI seems to be by inhibiting the activity of c-Myc which is importante to maintain ESC undifferentiated since c-Myc is na an amplifyer of signaling patheways that maintain ESC proliferating. Together PKCβI has a central role in the regulation of the gene expression of ESC at the level of epigenetic modifications and transcriptional regulation
|
57 |
Biopolímero de fibrina como scaffold para células–tronco e secretomas na formação de novo ossoCapuano Neto, Fausto. January 2019 (has links)
Orientador: Rui Seabra Ferreira Junior / Resumo: Atualmente são muitos casos de pacientes que perdem estrutura óssea em acidentes ou reabsorção patológica. A bioengenharia óssea é um tratamento promissor que visa reconstruir estas estruturas sem a morbidade do enxerto autógeno. O tecido ósseo é um conjuntivo especializado com a função principal de proteção e sustentação dos tecidos moles, mas também é responsável pela produção de tipos celulares e homeostase de minerais. Sua reparação é complexa com diferentes tipos celulares e agentes quimiotáticos que funcionam de forma orquestrada até a reparação. As terapias celulares vêm sendo estudadas para promover a reparação de defeitos que o organismo por si não consegue resolver. Células menos especializadas como as células-tronco embrionárias (ESCs) possuem grande potencial terapêutico, mas são complicadas eticamente. Já as células-tronco mesenquimais (MSC) podem ser autólogas, o que minimiza o risco de imunogenicidade mas necessitam área doadora do paciente. Atualmente ainda não há consenso quanto ao uso de células tronco na terapia regenerativa pois há grandes variáveis como a melhor forma de aplicação, a quantidade correta e o melhor tipo celular para a regeneração óssea. As células produzem mediadores químicos no local enxertado, que segundo pesquisas recentes é o principal mecanismo de reparação tecidual. Estes mediadores são depositados em abundância no meio de cultura durante a cultura celular e usados na bioengenharia com a ajuda de scaffolds. Os biopolímeros de fibrina ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Chapter I present a review about bone repair and its biological events, bioengineering, cells, fibrin biopolymer as scaffold and the secretoma derived from cell culture. Many patients nowadays lose bone structure in accidents or pathological reabsorption. Bone bioengineering is a promising treatment that aims to reconstruct these structures without autogenous graft morbidity. Bone tissue is a specialized connective tissue specialized in protecting and supporting soft tissues, but it is also responsible for the production of cell types and mineral homeostasis. The bone healing is a complex process where different cell types and chemotactic agents work in an orchestrated way. The cell therapies can promote the repair of defects that the body cannot solve. Less specialized cells like embryonic stem cells (ESCs) have great therapeutic potential, but are ethically complicated. In contrast, mesenchymal stem cells (MSCs) may be autologous, which minimizes the risk of immunogenicity but requires a patient's donor area. Currently there is still no consensus regarding the use of stem cells in regenerative therapy, studies uses different methods, cells and biomaterials for bone regeneration. Recent researches advocate that paracrine secretions by cells are main mechanism of tissue repair. These mediators are deposited in abundance in the culture medium during cell culture. Fibrin biopolymers (BF) are natural biomaterials to the body and can function as drug delivery of growth factors, c... (Complete abstract click electronic access below) / Doutor
|
58 |
Investigating the role and regulation of mRNA capping in pluripotency and differentiationSuska, Olga January 2017 (has links)
The mRNA cap added to the 5’ end of nascent transcripts is required for the efficient gene expression in eukaryotes. In vertebrates, the guanosine cap is methylated at N7 position by RNMT, which is in complex with its activating subunit RAM. Additionally, the first and second transcribed nucleotides can be methylated at ribose O2 position by CMTR1 and CMTR2 respectively. The mRNA cap protects transcripts from degradation and recruits cap-binding factors to promote pre-mRNA processing, nuclear export and translation initiation. In mouse embryonic stem cells (mESCs), high levels of RAM maintain expression of pluripotency factors. Differentiation of mESCs to neural progenitors is accompanied by a suppression of RAM, resulting in downregulation of pluripotency factors and efficient formation of neural cells. Here, I demonstrated that the suppression of RAM during neural differentiation is promoted via ubiquitination and proteasomal degradation. Concurrently, neural differentiation is associated with an increase in CMTR1 expression, creating a developmental cap methyltransferase switch. Moreover, differentiation into endodermal and mesodermal lineages exhibited distinct changes in the mRNA capping enzymes expression. In mESCs, RAM promotes expression of translation-associated proteins and promotes global loading of mRNA on ribosomes. RAM contributes to the ESC-specific gene expression program, by maintaining optimal expression of pluripotency-associated transcripts and inhibiting expression of neural genes. Chromatin immunoprecipitation revealed that RAM, RNMT and CMTR1 promote binding of RNA polymerase II at gene loci. In RAM-repressed cells, RNA polymerase II binding was reduced at pluripotency-associated genes, but relatively increased at neural genes. Moreover, knock-down of RNMT or CMTR1 induced increased or decreased accumulation of RNA polymerase II at promoter proximal regions respectively. In naïve T cells, Rnmt or Cmtr1 conditional knock-outs caused downregulation of translation-related transcripts and upregulation of cell cycle transcripts. Furthermore, many transcripts were specifically dependent on RNMT or CMTR1 for expression, demonstrating distinct roles of these cap methyltransferases. Thus, the mRNA cap methylation emerges as an important regulator of pluripotency and differentiation, modulating gene expression at transcriptional and post-transcriptional levels.
|
59 |
The generation of a candidate axial precursor in three dimensional aggregates of mouse embryonic stem cellsBaillie-Johnson, Peter January 2017 (has links)
Textbook accounts of vertebrate embryonic development have been based largely upon experiments on amphibian embryos, which have shown that the tissues of the trunk and tail are organised from distinct precursors that existed during gastrulation. In the mouse and chick, however, retrospective clonal analyses and transplantation experiments have demonstrated that the amniote body instead arises progressively from a population of axial precursors that are common to both the neural and mesodermal tissues of the trunk and tail. For this reason, they are known as neuro-mesodermal progenitors (NMps). Detailed studies of NMps have been precluded by their lack of a unique gene expression profile and the technical difficulties associated with isolating them from the embryo. Mouse embryonic stem cells (ESCs) provide the possibility of instead deriving them in vitro. ESCs have been used to model developmental processes, partly through large cellular aggregates known as embryoid bodies. These structures do not, however, resemble the axial organisation of the embryo and they develop in a disordered manner. This thesis presents a novel culture system of small, three-dimensional aggregates of ESCs (gastruloids) that can recreate the events of early post-implantation development, including axial elongation. Gastruloids are the first ESC-based model for axial elongation morphogenesis; this body of work characterises their development and identifies a candidate population of NMps within their elongating tissues. Additionally, this work establishes a xenotransplantation assay for testing the functional properties of in vitro-derived NMp populations in the chicken embryo and applies it to NMps from gastruloid cultures. The results of this assay show that gastruloids are a credible source of NMps in vitro and therefore offer a new experimental means to interrogate their properties. The use of gastruloids to recreate embryonic development has implications for basic research as a synthetic system and for the therapeutic derivation of other embryonic progenitors through bioengineering.
|
60 |
Caracterização da proteína quinase C Beta I nuclear em células tronco embrionárias / Characterization of protein kinase C beta I in embryonic stem cell nucleusJosé Matheus Camargo Bonatto 24 October 2014 (has links)
As proteína quinases C (PKC) pertencem à família das serina/treonina quinases, que vem sendo apontadas como importantes enzimas para os processos de proliferação e diferenciação das células tronco embrionárias (CTE), todavia, a função exata de cada isoforma dessa família ainda não está clara. Dados anteriores do nosso laboratório indicam que dentre as PKCs expressas em CTE, formas cataliticamente ativas da PKCβI são altamente expressas no núcleo das CTE murinas. Estas ao se diferenciarem expressam essa quinase no seu citoplasma ou deixam de expressar a mesma, e que a maioria dos alvos da PKCβI em CTE indiferenciada estão envolvidos em processos de regulação da transcrição de proteínas envolvidas em processos de proliferação/ diferenciação. Dando continuidade aos resultados anteriores do laboratório, no presente trabalho, com técnicas de proteômica e fosfoproteômica identificamos outros alvos nucleares da PKCβI em CTE indiferenciadas. Vimos que de fato inibindo-se a PKCβI diminuiu-se a fostorilação de fatores envolvidos com a indiferenciação das CTE. Dentre os alvos da PKCβI encontramos a proteína adaptadora, TIF1 que recruta proteínas remodeladoras de cromatina. Essa proteína é essencial para a manutenção do estado indiferenciado das CTE. In vitro a PKCβI foi capaz de fosforilar a TIF1β e inibindo-se a PKCβI por RNAi vimos uma diminuição na expressão da TIF1β e no fator de indiferenciação Nanog cuja expressão já foi demonstrada ser regulada pela TIF1β. Além disso vimos que inibindo-se a PKCβI com o peptídeo inibidor da PKCβI aumentou a expressão de proteínas reguladas pelo c-Myc. E que o RNAi para a PKCβI aumentou a expressão de proteínas que regulam a expressão do c-Myc. Não vimos nenhum efeito na fosforilação ou expressão do c-Myc após a inibição da PKCβI o que sugere que a PKCβI ative proteínas repressoras do c-Myc. Nossos estudos sugerem que a PKCβI regula a manutenção do estado indiferenciado das CTE regulando a expressão e atividade da Tif1β um possível alvo direto da PKCβI. Levando a modificações da cromatina e regulação da expressão de genes que mantém as CTE indiferenciadas. Outro ponto de regulação da PKCβI parece ser a nibição da atividade de c-Myc o que seria importante para a manutenção do estado indiferenciado visto que o c-Myc é um amplificador das vias de sinalização que mantém as células proliferando. Desta forma a PKCβI parece ter um papel central na regulação da expressão gênica de CTE à nível de modificações epigenéticas e a nível transcricional mantendo as CTE indiferenciadas. / The Protein kinase C (PKC) family of serine/treonine kinases, are being described as important enzymes for proliferation and diferentiation of embryonic stem cells (ESC), however, the exact function of the different isoenzymes of this family still is unclear. Previous data from our laboratory indicates that amongst the PKCs expressed in ESC, catalytically active forms of PKCβI are highly expressed in nucleus of murine ESC. When these cells differentiate this kinase can be found in the cytoplasm or not expressed at all, and that the majority of PKCβI targets in undifferentiated ESC are involved in the regulation of proteins involved in transcription of proteins involved in proliferation/ diferentiation. Continuing our previous work herewith using proteomics and phosphoproteomics techniques we identified other nuclear PKCβI targets in undifferentiated ESC. We indeed saw that inhibiting PKCβI decreased the phosphorylation of factors involved with maintainance of the undifferentiated state of ESC. Amongst the targets of PKCβI we found the adaptor protein, TIF1βI, that recruits cromatin remodeling proteins. This protein is essential for the maintenance of the undifferentiated state of ESC. In vitro PKCβI phosphorylated TIF1β and inhibiting PKCβI with RNAi decreased the expression of TIF1β and of the undifferentiation factor Nanog whose expression has been shown to be regulated by TIF1β. We also saw that inhibiting PKCβI with a peptide inhibitor increased the expression of proteins regulated by c-Myc, and that RNAi for PKCβI increased the expression of proteins that regulate the expression of c-Myc. We did not see any effect on the phosphorylation or expression of c-Myc after inhibition of PKCβI suggesting that PKCβI activates c-Myc repressor proteins. Our studies sugest that PKCβI regulates the maintenance of the undiferentiated state of ESC regulating the expression and activity of Tif1β a possibly a direct target of PKCβI, leading to chromatin modifications and regulation of genes that maintain ESC undiferentiated. Another form of regulation of PKCβI seems to be by inhibiting the activity of c-Myc which is importante to maintain ESC undifferentiated since c-Myc is na an amplifyer of signaling patheways that maintain ESC proliferating. Together PKCβI has a central role in the regulation of the gene expression of ESC at the level of epigenetic modifications and transcriptional regulation
|
Page generated in 0.0874 seconds