Spelling suggestions: "subject:"2mission pectra"" "subject:"2mission espectra""
11 |
Construction and Analysis of a Microwave-induced Plasma Lamp for Precision SpectroscopyBoesch, Andreas 16 March 2016 (has links)
No description available.
|
12 |
The fabrication and characterisation of quantum dots, wires and wire net worksZhang, Qi January 1996 (has links)
No description available.
|
13 |
COLLISIONAL AND RADIATIVE RELAXATION IN SODIUM DIMER AND ARGON ATOM COLLISIONSHorton, Timothy Scott 02 December 2016 (has links)
No description available.
|
14 |
Experimental studies of surface-adsorbate interactions and surface magnetismClowes, Steven Kenneth January 1999 (has links)
No description available.
|
15 |
High-resolution infrared emission spectroscopy of diatomic and triatomic metal hydridesShayesteh, Alireza January 2006 (has links)
Several hydrides of Group 2 and 12 elements were generated in the gas phase using an emission source that combines an electrical discharge with a high temperature furnace, and their high-resolution infrared emission spectra were recorded with a Fourier transform spectrometer. Two classes of molecules were studied: <em>a)</em> diatomic metal hydrides BeH, MgH, CaH, SrH, ZnH and CdH; <em>b)</em> linear triatomic metal hydrides BeH<sub>2</sub>, MgH<sub>2</sub>, ZnH<sub>2</sub> and HgH<sub>2</sub>. <br /><br /> Infrared emission spectra of BeH, MgH, CaH, SrH, ZnH and CdH free radicals contained several vibration-rotation bands in their <sup>2</sup>SIGMA<sup>+</sup> ground electronic state. The new data were combined with all the previous ground state data from diode laser infrared spectra and pure rotation spectra available in the literature. Spectroscopic constants, i. e. , vibrational band origins, rotational, centrifugal distortion, and spin-rotation interaction constants, were determined for each observed vibrational level by least-squares fitting of all the data. In addition, the data from all isotopologues were fitted simultaneously using the empirical Dunham-type energy level expression for <sup>2</sup>SIGMA<sup>+</sup> states, and correction parameters due to the breakdown of the Born-Oppenheimer approximation were determined. The equilibrium internuclear distances (<em>r</em><sub>e</sub>) of <sup>9</sup>BeH, <sup>24</sup>MgH, <sup>40</sup>CaH, <sup>88</sup>SrH, <sup>64</sup>ZnH and <sup>114</sup>CdH were determined to be 1. 342424(2), 1. 729721(1), 2. 002360(1), 2. 146057(1), 1. 593478(2) and 1. 760098(3) angstroms, respectively, and the corresponding <em>r</em><sup>e</sup> distances for <sup>9</sup>BeD, <sup>24</sup>MgD, <sup>40</sup>CaD, <sup>88</sup>SrD, <sup>64</sup>ZnD and <sup>114</sup>CdD are 1. 341731(2), 1. 729157(1), 2. 001462(1), 2. 145073(1), 1. 593001(2) and 1. 759695(2) angstroms, respectively. <br /><br /> Gaseous BeH<sup>2</sup>, MgH<sup>2</sup>, ZnH<sup>2</sup> and HgH<sup>2</sup> molecules were discovered and unambiguously identified by their high-resolution infrared emission spectra. The ν<sub>3</sub> antisymmetric stretching fundamental band and several hot bands in the ν<sub>3</sub> region were rotationally analyzed, and spectroscopic constants were obtained for almost all naturally-occurring isotopologues. The rotational constants of the 000 ground states were used to determine the <em>r</em><sub>0</sub> internuclear distances. For BeH<sub>2</sub>, ZnH<sub>2</sub>, ZnD<sub>2</sub>, HgH<sub>2</sub> and HgD<sub>2</sub> molecules, the rotational constants of the 000, 100, 01<sup>1</sup>0 and 001 levels were used to determine the equilibrium rotational constants (<em>B</em><sub>e</sub>) and the associated equilibrium internuclear distances <em>r</em><sub>e</sub>. The <em>r</em><sub>e</sub> distances of ZnH<sub>2</sub> and ZnD<sub>2</sub> differed by about 0. 01%, and those of HgH<sub>2</sub> and HgD<sub>2</sub> differed by about 0. 005%. These discrepancies were larger than the statistical uncertainties by one order of magnitude, and were attributed to the breakdown of the Born-Oppenheimer approximation.
|
16 |
High-resolution infrared emission spectroscopy of diatomic and triatomic metal hydridesShayesteh, Alireza January 2006 (has links)
Several hydrides of Group 2 and 12 elements were generated in the gas phase using an emission source that combines an electrical discharge with a high temperature furnace, and their high-resolution infrared emission spectra were recorded with a Fourier transform spectrometer. Two classes of molecules were studied: <em>a)</em> diatomic metal hydrides BeH, MgH, CaH, SrH, ZnH and CdH; <em>b)</em> linear triatomic metal hydrides BeH<sub>2</sub>, MgH<sub>2</sub>, ZnH<sub>2</sub> and HgH<sub>2</sub>. <br /><br /> Infrared emission spectra of BeH, MgH, CaH, SrH, ZnH and CdH free radicals contained several vibration-rotation bands in their <sup>2</sup>SIGMA<sup>+</sup> ground electronic state. The new data were combined with all the previous ground state data from diode laser infrared spectra and pure rotation spectra available in the literature. Spectroscopic constants, i. e. , vibrational band origins, rotational, centrifugal distortion, and spin-rotation interaction constants, were determined for each observed vibrational level by least-squares fitting of all the data. In addition, the data from all isotopologues were fitted simultaneously using the empirical Dunham-type energy level expression for <sup>2</sup>SIGMA<sup>+</sup> states, and correction parameters due to the breakdown of the Born-Oppenheimer approximation were determined. The equilibrium internuclear distances (<em>r</em><sub>e</sub>) of <sup>9</sup>BeH, <sup>24</sup>MgH, <sup>40</sup>CaH, <sup>88</sup>SrH, <sup>64</sup>ZnH and <sup>114</sup>CdH were determined to be 1. 342424(2), 1. 729721(1), 2. 002360(1), 2. 146057(1), 1. 593478(2) and 1. 760098(3) angstroms, respectively, and the corresponding <em>r</em><sup>e</sup> distances for <sup>9</sup>BeD, <sup>24</sup>MgD, <sup>40</sup>CaD, <sup>88</sup>SrD, <sup>64</sup>ZnD and <sup>114</sup>CdD are 1. 341731(2), 1. 729157(1), 2. 001462(1), 2. 145073(1), 1. 593001(2) and 1. 759695(2) angstroms, respectively. <br /><br /> Gaseous BeH<sup>2</sup>, MgH<sup>2</sup>, ZnH<sup>2</sup> and HgH<sup>2</sup> molecules were discovered and unambiguously identified by their high-resolution infrared emission spectra. The ν<sub>3</sub> antisymmetric stretching fundamental band and several hot bands in the ν<sub>3</sub> region were rotationally analyzed, and spectroscopic constants were obtained for almost all naturally-occurring isotopologues. The rotational constants of the 000 ground states were used to determine the <em>r</em><sub>0</sub> internuclear distances. For BeH<sub>2</sub>, ZnH<sub>2</sub>, ZnD<sub>2</sub>, HgH<sub>2</sub> and HgD<sub>2</sub> molecules, the rotational constants of the 000, 100, 01<sup>1</sup>0 and 001 levels were used to determine the equilibrium rotational constants (<em>B</em><sub>e</sub>) and the associated equilibrium internuclear distances <em>r</em><sub>e</sub>. The <em>r</em><sub>e</sub> distances of ZnH<sub>2</sub> and ZnD<sub>2</sub> differed by about 0. 01%, and those of HgH<sub>2</sub> and HgD<sub>2</sub> differed by about 0. 005%. These discrepancies were larger than the statistical uncertainties by one order of magnitude, and were attributed to the breakdown of the Born-Oppenheimer approximation.
|
17 |
Corona discharges on the surfaces of high voltage composite insulatorsHinde, David Derek January 2009 (has links)
The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications.
This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon.
Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented.
A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators.
Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.
|
18 |
Estudo dos principais precursores de ozônio na região metropolitana de São Paulo / Study of major precursors ozone in the metropolitan area of São PauloALVIM, DEBORA S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:58Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:38Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
19 |
Estudo dos principais precursores de ozônio na região metropolitana de São Paulo / Study of major precursors ozone in the metropolitan area of São PauloALVIM, DEBORA S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:58Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:38Z (GMT). No. of bitstreams: 0 / O ozônio (O3) é um dos poluentes que representa grande preocupação em termos de qualidade do ar na Região Metropolitana de São Paulo (RMSP). No ano de 2012 foram observados 98 dias de ultrapassagens do padrão horário da qualidade do ar para este poluente na RMSP. A exposição aos poluentes atmosféricos como O3 e outros está associada ao prejuízo da saúde respiratória. O enfoque deste estudo é determinar os principais Compostos Orgânicos Voláteis (COV) precursores de O3 para auxiliar no controle deste poluente. Neste trabalho foram realizadas 78 amostragens durante a semana de hidrocarbonetos no ano de 2006 e 66 amostragens de hidrocarbonetos, 62 de aldeídos e 42 de etanol durante o ano de 2011/2012, 7:00 h às 9:00 h, na estação CETESB IPEN/USP. Medidas de COV também foram realizadas no ano de 2006 e 2008, na Estação CETESB Cerqueira César. Adicionalmente, foram efetuados testes de emissões veiculares durante o ano de 2009 de 5 veículos a diesel, 3 a etanol, 2 a gasolina C e 1 motocicleta. O modelo de trajetórias OZIPR foi utilizado para determinar os principais precursores de O3. Durante o ano de 2011/2012, na Estação CETESB IPEN/USP, a classe de aldeídos representou 35,3% dos COV analisados em concentração na atmosfera, seguido pelo etanol 22,6%, compostos aromáticos 15,7%, alcanos 13,5%, cetonas 6,8%, alcenos 6,0% e alcadienos < 0,1%. Considerando a concentração dos compostos e sua reatividade, as simulações executadas com o modelo OZIPR mostraram que o acetaldeído contribuiu com 61,2% da formação do O3 na atmosfera da RMSP no ano de 2011/2012. Dos COV analisados, a classe dos aldeídos contribui com 74% da produção de O3, aromáticos 14,5%, alcenos 10,2%, alcanos 1,3% e alcadienos (isopreno) 0,03%. O estudo de emissão veicular mostrou que 39% dos aldeídos foram provenientes de veículos a etanol, 28% a diesel, 26% a gasolina C e 7% de motocicletas. As emissões dos COV por veículos a gasolina contribuíram com 44% da formação de O3, a diesel 22%, a etanol 19% e motocicletas 15%. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
20 |
Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd₁₋ₓHgₓTe and PbS quantum dots: method- and material-inherent challengesHatami, Soheil, Würth, Christian, Kaiser, Martin, Leubner, Susanne, Gabriel, Stefanie, Bahrig, Lydia, Lesnyak, Vladimir, Pauli, Jutta, Gaponik, Nikolai, Eychmüller, Alexander, Resch-Genger, Ute 16 December 2019 (has links)
Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf ). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes |trybe, IR140, and IR26 and several infrared (IR)-emissive Cd₁₋ₓHgₓTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10⁻³ in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements.
|
Page generated in 0.0827 seconds