• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 67
  • 25
  • 23
  • 19
  • 18
  • 15
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The cloning and characterisation of vegetal pole specific genes in Xenopus laevis

Hudson, Clare January 1997 (has links)
No description available.
2

Development of an Interferon Bioassay and Primitive Endoderm Cell Lines to Study Lineage Specification During Early Bovine Embryogenesis

Mccoski, Sarah R. 09 January 2015 (has links)
Embryonic wastage is rampant in cattle during early stages of pregnancy, particularly the first few weeks of gestation, a time recognized for significant remodeling of the embryo. Of particular interest to this laboratory are the first two lineage specification events, trophectoderm (TE) and primitive endoderm (PrE) specification, occurring between days 6 and 8 of gestation. The TE is responsible for uterine attachment and production of interferon-tau (IFNT), the factor of maternal recognition of pregnancy in ruminants. The PrE forms the yolk sac, which provides nutrients to the developing embryo. It is probable that developmental miscues during these differentiation events are responsible for the high rate of pregnancy loss, however, information on these early lineage processes is lacking in ruminants. The objective of the first study was to improve the current methods for detecting IFNT in biological samples. A novel interferon stimulatory response element (ISRE)-reporter assay was created, and provides adequate quantification to measure IFNT. Additionally, it has a shorter completion time than previous bioassays, and does not require the use of a live virus. The second study describes the development of a PrE cell line derived from bovine embryos. The PrE outgrowths can be produced at high rate, and can be maintained in a continuous culture system for about 6 weeks. As a true bovine PrE cell line does not currently exist, these lines hold great potential for the study of early development. Collectively, these studies improve knowledge of bovine embryogenesis, and provide insights that may be used to limit the pregnancy failures occurring in this species. / Master of Science
3

Differentiation of extraembryonic endoderm stem cell lines and parietal endoderm into visceral endoderm : the art of XEN cells

Paca, Agnieszka Maria January 2012 (has links)
The extraembryonic endoderm of mammals is essential for nutritive support of the foetus and patterning of the early embryo. Visceral and parietal endoderm are major subtypes of this lineage with the former exhibiting most, if not all, of the embryonic patterning properties. Extraembryonic endoderm (XEN) cell lines derived from the primitive endoderm of mouse blastocysts represent a cell culture model of this lineage, but are biased towards parietal endoderm in culture and in chimaeras. Here, I further characterise XEN cells and show that these cell lines exhibit high levels of heterogeneity. In an effort for XEN cells to adopt visceral endoderm character different aspects of the in vivo environment were mimicked. I found that BMP4 and laminin promote a mesenchymal-to-epithelial transition of XEN cells with upregulation of epithelial markers and downregulation of mesenchymal markers. Gene expression analysis showed the differentiated XEN cells most resembled extraembryonic visceral endoderm. Correspondingly, inhibition of Erk and BMP signalling drives XEN cells toward parietal endoderm fate. Finally, I show that BMP4 treatment of freshly isolated parietal endoderm from Reichert’s membrane promotes its visceral endoderm differentiation. This suggests that parietal endoderm is still developmentally plastic and can be transdifferentiated to a visceral endoderm in response to BMP. Generation of visceral endoderm from XEN cells uncovers the true potential of these blastocyst-derived cells and is a significant step towards modelling early developmental events ex vivo.
4

Nodal signalling during targeted differentiation of human embryonic stem cells towards definitive endoderm

Miller, Duncan January 2013 (has links)
Targeted differentiation of human embryonic stem cells (hESCs) towards definitive endoderm (DE) is the first step in generating hepatic or pancreatic cell types with potential for clinical application. Characterisation and efficiency of DE differentiation is improving, however the specific effects of the different exogenous growth factors used, and the changing presence and activity of endogenous factors, are still not well understood. One such endogenous factor, the TGFβ ligand Nodal, is known to drive patterning and differentiation of the primitive streak and DE in the developing mouse embryo. The effect of Nodal signalling during hESC DE differentiation is unknown, and the common use of a related exogenous ligand Activin A may also serve to upregulate rather than simply mimic it. In order to explore this, Activin A differentiation of hESCs in defined culture conditions was analysed. The expression of characteristic mesendoderm and DE markers increased during Activin A treatment, which was significantly enhanced by the inclusion of exogenous Wnt3a. A maintained presence of the pluripotency factor Nanog was observed in most cells expressing markers of DE. The levels of Nodal and its co-receptor Cripto, which were raised during the early stage of Activin A treatment, were also marginally enhanced by Wnt3a, and evidence of Nodal endocytosis further suggested an active signalling presence. RNA interference (RNAi) of Nodal negatively affected both pluripotency maintenance during normal pluripotent culture, and the capacity to differentiate towards DE. Use of a Cripto blocking antibody also inhibited differentiation towards DE. The results strongly suggested the presence of Nodal signalling, as well as possible roles for Nanog, Wnt-related signalling, and Nodal signalling during Activin A-mediated DE differentiation. The results contribute to current understanding of how DE differentiation in hESCs is regulated. They also identify clear targets for further investigation, which would lead to improved characterisation and differentiation of DE from hESCs.
5

Conserved mode of endoderm induction acts to promote context dependent embryonic and extra-embryonic lineage specification

Anderson, Kathryn Gayle Victoria January 2015 (has links)
In mammalian development, endoderm formation occurs in two phases and the fate of these populations is different. In the blastocyst, inner cell mass (ICM) cells generate the primitive endoderm (PrE), which will give rise to the extra-embryonic parietal (PE) and visceral endoderm (VE). Hematopoietically expressed homeobox (Hhex) protein is initially expressed throughout the PrE and subsequently becomes restricted to the anterior visceral endoderm (AVE), one of two important early embryonic signalling centres in the mouse. During gastrulation a second wave of endoderm differentiation occurs, the definitive endoderm (DE), generating the foregut. Immediately following the induction of DE, regional identity is initially established in the anterior region with the expression of Hhex. One of the earliest specification events in this lineage is the specification of anterior fate by Hhex, this time in a second signalling centre, the anterior definitive endoderm (ADE). The ADE is both important for embryonic patterning, and as the precursor population for differentiating to the foregut and its derivatives the thyroid, liver and pancreas. The literature surrounding these early embryonic patterning events is covered in depth in chapter 1. Embryonic stem cells (ESCs) are normal cell lines derived from the mammalian blastocyst at the time that it is making PrE. A number of laboratories have generated protocols to make endoderm from ESCs and in my thesis I define approaches to distinguish between PrE and DE. I generated a new ESC reporter line utilising a gene normally expressed in both the PrE and later in hepatic endoderm; this reporter contains a GFP in the first exon of the Hnf4α locus. This was combined with a second fluorescent reporter containing DSRed in the Hhex locus. This cell line is described and characterised in chapter 3. As Hnf4α is initially expressed in PrE prior to Hhex, but in the DE following Hhex, I was able to use the temporal expression of this reporter to distinguish the induction of PrE from DE. As Activin and Wnt are known to induce endoderm from ESCs, I was then able to ask what sort of endoderm the combination of these two signals induced. In chapter 4 I found that normal ESCs would readily differentiate to iPrE in the presence of Activin and Wnt3a. While this has not been described previously, my analysis suggests that ESC protocols applying these cytokines directly to ESCs have produced PrE. Given that ESCs are derived from the blastocyst, the generation of iPrE from Wnt3a/Activin treatment fits with developmental paradigms. However, Act/Wnt3a is used routinely on Human ESCs (hESCs) and so I attempted to reconcile these observations. HESCs, while derived from the blastocyst, appear to progress developmentally in vitro, to a stage closer to the epiblast, immediately prior to gastrulation. I therefore assessed the effect of Activin and Wnt3a on mouse stem cell lines derived from the epiblast (Epiblast Stem Cells, EpiSCs), that are grown under similar conditions to hESCs. When Wnt3a/Act is applied to these cells I found that they made DE rather than PrE, which I describe in chapter 4. Taken together my observations suggest that Act/Wnt3a are general endoderm inducers that induce context specific differentiation in vitro. The cell type derived in response to this treatment depends on the developmental stage of the starting stem cell culture. During the course of this work, I also observed that PrE was growing under Activin/Wnt3a treatment. As a number of cell culture systems have been established that reflect PE, but not truly bipotent PrE, I investigated the conditions under which PrE can be expanded. In chapter 5 I characterize a new PrE culture system, in which bipotent extra-embryonic endoderm can be expanded indefinitely in culture. I also explore a bit more precisely the nature of the starting cells that initially become exposed to Activin/Wnt3a treatment. Previous work has extensively characterized the existence of a primed population of PrE in ESC culture and in chapter 6 I explore the existence of a primed DE population in EpiSC culture. Taken together, my thesis is the first demonstration that Activin/Wnt3a can induce different endoderm populations in different embryonic stem cell populations. It underlies the notion that the evolutionary origin of both cell types is the same and that the pathways evolved for extra-embryonic development in mammals just exploit the ancient modes of germ layer specification that evolved with gastrulation.
6

Directed differentiation of endodermal cells from mouse embryonic stem cells

Kim, Peter Tae Wan 11 1900 (has links)
Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes and chronic liver disease. Various attempts have been made to produce cells that can serve as precursors for pancreas and liver. By using all-trans-retinoic acid, basic fibroblast growth factor, dibutyryl cAMP, and cyclopamine, an attempt has been made to produce definitive endoderm and subsequently cells that can serve as pancreatic and hepatocyte precursors from mouse embryonic stem cells. By using retinoic acid and basic-FGF, in the absence of embryoid body formation, mouse embryonic stem cells were differentiated at different culture periods. Four protocols of varying lengths of culture and reagents and their cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, pancreas and hepatocytes. Inclusion of DBcAMP and extension of culture time resulted in cells that display features of definitive endoderm by expression of Sox 17 and FOXA2 and minimal expression of primitive endoderm and other germ cell layers such as ectoderm and mesoderm. These cells produced insulin and C-peptide and secreted insulin in a glucose responsive manner. However, they seem to lack mature insulin secretion mechanism. There was a production of hepatocyte markers (AFP-2 and transthyretin) but there was insufficient data to assess for convincing production of hepatocytes. In summary, one of the protocols produced cells that displayed characteristics of definitive endoderm and they may serve as pancreatic endocrine precursors.
7

Directed differentiation of endodermal cells from mouse embryonic stem cells

Kim, Peter Tae Wan 11 1900 (has links)
Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes and chronic liver disease. Various attempts have been made to produce cells that can serve as precursors for pancreas and liver. By using all-trans-retinoic acid, basic fibroblast growth factor, dibutyryl cAMP, and cyclopamine, an attempt has been made to produce definitive endoderm and subsequently cells that can serve as pancreatic and hepatocyte precursors from mouse embryonic stem cells. By using retinoic acid and basic-FGF, in the absence of embryoid body formation, mouse embryonic stem cells were differentiated at different culture periods. Four protocols of varying lengths of culture and reagents and their cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, pancreas and hepatocytes. Inclusion of DBcAMP and extension of culture time resulted in cells that display features of definitive endoderm by expression of Sox 17 and FOXA2 and minimal expression of primitive endoderm and other germ cell layers such as ectoderm and mesoderm. These cells produced insulin and C-peptide and secreted insulin in a glucose responsive manner. However, they seem to lack mature insulin secretion mechanism. There was a production of hepatocyte markers (AFP-2 and transthyretin) but there was insufficient data to assess for convincing production of hepatocytes. In summary, one of the protocols produced cells that displayed characteristics of definitive endoderm and they may serve as pancreatic endocrine precursors.
8

Investigating the function of the Receptor Tyrosine Kinase ALK during Drosophila melanogaster development /

Lorén, Christina January 2004 (has links)
Diss. (sammanfattning) Umeå : Univ., 2004. / Härtill 4 uppsatser.
9

Directed differentiation of endodermal cells from mouse embryonic stem cells

Kim, Peter Tae Wan 11 1900 (has links)
Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes and chronic liver disease. Various attempts have been made to produce cells that can serve as precursors for pancreas and liver. By using all-trans-retinoic acid, basic fibroblast growth factor, dibutyryl cAMP, and cyclopamine, an attempt has been made to produce definitive endoderm and subsequently cells that can serve as pancreatic and hepatocyte precursors from mouse embryonic stem cells. By using retinoic acid and basic-FGF, in the absence of embryoid body formation, mouse embryonic stem cells were differentiated at different culture periods. Four protocols of varying lengths of culture and reagents and their cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, pancreas and hepatocytes. Inclusion of DBcAMP and extension of culture time resulted in cells that display features of definitive endoderm by expression of Sox 17 and FOXA2 and minimal expression of primitive endoderm and other germ cell layers such as ectoderm and mesoderm. These cells produced insulin and C-peptide and secreted insulin in a glucose responsive manner. However, they seem to lack mature insulin secretion mechanism. There was a production of hepatocyte markers (AFP-2 and transthyretin) but there was insufficient data to assess for convincing production of hepatocytes. In summary, one of the protocols produced cells that displayed characteristics of definitive endoderm and they may serve as pancreatic endocrine precursors. / Surgery, Department of / Medicine, Faculty of / Graduate
10

Function of Frizzled-7/Syndecan-4 Signaling in Foregut Organ Development

Zhang, Zheng 09 June 2015 (has links)
No description available.

Page generated in 0.0555 seconds