• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 56
  • 45
  • 24
  • 12
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 394
  • 394
  • 140
  • 106
  • 66
  • 65
  • 62
  • 58
  • 55
  • 55
  • 48
  • 43
  • 42
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Role of Endoplasmic Reticulum Stress Response in Parainfluenza Virus Acute to Persistent Infections

Abbitt, Lauren L 01 January 2023 (has links) (PDF)
Persistent viral infections are a major health concern, with persistently infected (PI) cells being a source of continued shedding of virus and generation of viral mutants. Here, we hypothesized that cells persistently infected with the enveloped virus parainfluenza virus 5 (PIV5) would show altered expression of endoplasmic reticulum (ER) stress proteins and increased resistance to death caused by drug-induced ER stress. To test this, lysates of mock-infected, PIV5 acute-infected, and PIV5 PI human lung A549 cells were collected and levels of ER stress proteins were compared. Western blotting revealed that immunoglobulin heavy chain binding protein (BiP/GRP78) was present in higher levels in acute-infected and PI cells compared to naïve cells, indicating increased ER stress in both acutely infected and PI cells. Interestingly, basal levels of the ER stress-sensing protein IRE1-alpha were upregulated in PI compared to naïve and acutely infected cells, but PI cells showed decreased activation of IRE1-alpha compared to acutely infected cells. Naïve, acute-infected, and PI A549-NLR cells were treated with ER stress-inducing drugs tunicamycin, thapsigargin, and epigallocatechin gallate and monitored in real-time viability assays for drug-induced cell death. PI cells showed lower levels of stress-induced cell death compared to naive cells, whereas acute-infected cells experienced the greatest extent of cell death when challenged with ER stress-inducing drugs. Together, these results support the hypothesis that PIV5 persistently infected cells display altered ER stress response pathways and that PI cells are more resistant to death caused by ER stress-inducing drugs. Additionally, these results suggest that IRE1-alpha plays a key role in the shift from acute to persistent infection. These results have implications for the treatment of persistent viral infections, as well as the potential for these viruses to be used for oncolytic virotherapy in the future.
212

Mechanisms of Non-Conventional Cell Death in Brain Tumor Cells

Kaul, Aparna 14 July 2009 (has links)
No description available.
213

Sorting Signals, Domain Conformation and Interdomain Interactions in CFTR Misprocessing and Rescue

Bhrigu, Gargi 19 May 2010 (has links)
No description available.
214

CHARACTERIZATION OF BCL-2 INTERACTING PARTNERS AT THE ENDOPLASMIC RETICULUM

Chan, Franklin 04 1900 (has links)
<p>Cancer occurs when cells acquire a number of mutations that trigger uncontrolled cell growth. The normal cellular response to this dysregulation of growth is the activation of programmed cell death. While focus in cancer research has been mainly concentrated in the mechanism of programmed cell death at the mitochondria, endoplasmic reticulum is slowly emerging as an essential platform for this regulatory mechanism.</p> <p>Bcl-2 is the founding member of the Bcl-2 family of protein, which contributes to the regulation of cell death at the mitochondria and at the endoplasmic reticulum. Previously in our lab, we have shown using MCF-7 cells stably expressing Bcl-2 targeted to the endoplasmic reticulum; they were protected from estrogen deprivation induced cell death. Thus the regulatory mechanism of Bcl-2 at the endoplasmic reticulum represents an interesting avenue to improve current cancer therapeutics.</p> <p>Two approaches were utilized to identify and characterize Bcl-2 and its interacting partners at the endoplasmic reticulum. Using an affinity tag fused to Bcl-2 that has been engineered to target the endoplasmic reticulum, tandem affinity purification was utilized to identify novel Bcl-2 interacting partners when estrogen receptor positive cells are treated with estrogen deprivation. Using fluorescent protein fused to the proteins of interest, Fluorescent Lifetime Imaging Measurement (FLIM) was used to characterize the interactions of Bcl-2 and its known interacting partner at the endoplasmic reticulum. The findings of this thesis verify the applications of the two aforementioned methods in the study of Bcl-2 interacting proteins at the endoplasmic reticulum.</p> / Master of Science (MSc)
215

Quantitative Studies of Intracellular Trafficking of Two Classes of Resident Golgi Apparatus Proteins

Starr, Tregei Nicole 04 May 2006 (has links)
The research presented in this dissertation consists of two primary parts. The initial focus centered on understanding the distribution of Golgi resident glycosyltransferases between the ER and Golgi at steady-state. Retrograde trafficking of these Golgi proteins has been demonstrated experimentally mandating the existence of a dynamic equilibrium between the Golgi apparatus and ER. Our published studies also included the development of a quantitative method for analysis of data collected using fluorescent microscopy. The second part of this dissertation presents results pertaining to the quantification of a unique Golgi resident protein that cycles in the late endosome bypass pathway. Using the published method of analysis and techniques developed during the initial project, the anterograde and retrograde transport kinetics of this Golgi protein were determined and used to develop a compartmental model for pH sensitive trafficking in the bypass pathway. The spatial Golgi distribution of the protein during retrograde transport to the Golgi following endosomal exit was also investigated. This research lies at the interface of experimental cell biology and quantitative computational analysis. These experiments combined more traditional experimental biological approaches with more recent computational approaches to understanding cellular mechanisms. Additionally, development of a quantitative method of analysis validated the use of fluorescent microscopy as a quantitative tool for studying intracellular proteins. / Ph. D.
216

Super Low Dose Endotoxin Exacerbates Low Grade Inflammation through Modulating Cell Stress and Decreasing Cellular Homeostatic Protein Expression

Lyle, Chimera 20 June 2017 (has links)
The establishment of non-resolving inflammation underlies the pathogenesis of chronic inflammatory diseases in humans. Super low dose (SLD) endotoxin has been associated with exacerbating inflammation and the pathogenesis of chronic inflammatory diseases. However, the underlying molecular mechanisms are not well studied. In this study, I tested the hypothesis that SLD endotoxin may potentiate non-resolving innate immune cell inflammation through disrupting cellular endoplasmic reticulum (ER) homeostasis. We chose to study the dynamics of ER homeostasis in macrophages stimulated with SLD endotoxin. In naïve cells, ER stressor such as tunicamycin (TM) not only will induce cellular stress and inflammation through JNK and NFkβ activation, but also will cause subsequent compensatory homeostasis through inducing homeostatic molecules such as XBP1 and GRP78/BiP. We observed that cells challenged with SLD endotoxin have significantly reduced expression of homeostatic molecules XBP1 and BiP. Mechanistically, we observed that SLD-LPS increases phosphorylated HCK expression in TM treated cells. Phosphorylated HCK activation resulted in the phosphorylation of Golgi protein GRASP, leading to unstacking of Golgi cisterna and overall dysfunction of the Golgi apparatus. Dysfunctional Golgi apparatus and its effect on protein transport and secretion, may account for decreased levels of Site 2 Protease, reduced generation of ATF6 and its transcriptional target BiP. Taken together, our study reveal that super low dose endotoxin exacerbates low grade inflammation through increasing phosphorylation of HCK, inducing Golgi dysfunction, and decreasing BiP /homeostatic protein expression in innate immune cells. / Ph. D. / Non-resolving inflammation is a common factor shared in in many chronic inflammatory diseases such as atherosclerosis and diabetes mellitus type 2. Low levels of endotoxin have been shown to increase inflammation as well as further increase disease development. However, how such low levels of endotoxin is able to produce this effect is not well understood. This research focuses on how low levels of endotoxin can increase inflammation by decreasing the ability of the cell to restore homeostasis. It was found that a super low dose (SLD) endotoxin decreased activation of the unfolded protein response pathway (UPR). The UPR pathway is a prominent signaling pathway utilized by the cell to restore homeostasis and is activated following an accumulation of unfolded proteins in the endoplasmic reticulum of the cell. The disruption of this pathway by SLD endotoxin resulted in increased inflammatory signaling and decreased cellular homeostasis.
217

Identification and characterization of the endoplasmic reticulum (ER)-stress pathways in pancreatic beta-cells / Identification et caractérisation des voies de signalisation du stress du réticulum endoplasmique dans la cellule bêta pancréatique

Pirot, Pierre 26 November 2007 (has links)
The endoplasmic reticulum (ER) is the organelle responsible for synthesis and folding of secreted and membranous protein and lipid biosynthesis. It also functions as one of the main cellular calcium stores. Pancreatic beta-cells evolved to produce and secrete insulin upon demand in order to regulate blood glucose homeostasis. In response to increases in serum glucose, insulin synthesis represents nearly 50% of the total protein biosynthesis by beta-cells. This poses an enormous burden on the ER, rendering beta-cells vulnerable to agents that perturb ER function. Alterations of ER homeostasis lead to accumulation of misfolded proteins and activation of an adaptive response named the unfolded protein response (UPR). The UPR is transduced via 3 ER transmembrane proteins, namely PERK, IRE-1 and ATF6. The signaling cascades activated downstream of these proteins: a) induce expression of ER resident chaperones and protein foldases. Increasing the protein folding capacity of the ER; b) attenuate general protein translations which avoids overloading the stressed ER with new proteins; c) upregulate ER-associated degradation (ERAD) genes, which decreases the unfolded protein load of the ER. In severe cases, failure by the UPR to solve the ER stress leads to apoptosis. The mechanisms linking ER stress to apoptosis are still poorly understood, but potential mediators include the transcription factors Chop and ATF3, pro-apoptotic members of the Bcl-2 familly, the caspase 12 and the kinase JNK. <p>Accumulating evidence suggest that ER stress contributes to beta-cell apoptosis in both type 1 and type 2 diabetes. Type 1 diabetes is characterized by a severe insulin deficiency resulting from chronic and progressive destruction of pancreatic beta-cells by the immune system. During this autoimmune assault, beta-cells are exposed to cytokines secreted by the immune cells infiltrating the pancreatic islets. Our group has previously shown that the pro-inflamatory cytokines interleukin-1beta (IL1-beta and interferon-gamma (IFN-gamma), via nitric oxide (NO) formation, downregulate expression and function of the ER Ca2+ pump SERCA2. This depletes beta-cell ER Ca2+ stores, leading to ER stress and apoptosis. Of note, IL1-beta alone triggers ER stress but does not induce beta-cell death, while IFN-gamma neither causes ER stress nor induces beta-cell death. Together, these cytokines cause beta-cell apoptosis but the mechanisms behind this synergistic effect were unknown.<p>Type 2 diabetes is characterized by both peripheral resistance to insulin, usually as a result of obesity, and deficient insulin secretion secondary to beta cell failure. Obese patients have high levels of circulating free fatty acids (FFA) and several studies have shown that the FFA palmitate induces ER stress and beta-cell apoptosis.<p>In the present work we initially established an experimental model to specifically activate the ER stress response in pancreatic beta-cells. For this purpose, insulinoma cells (INS-1E) or primary rat beta-cells were exposed to the reversible chemical SERCA pump blocker cyclopiazonic acid (CPA). Dose-response and time course experiments determined the best conditions to induce a marked ER stress without excessive cell death (<25%).<p>The first goal of the work was to understand the synergistic effects of IL1-beta and IFN-gamma leading to pancreatic beta-cell apoptosis. Our group previously observed, by microarray analysis of primary beta-cells, that IFN-gamma down-regulates mRNAs encoding for some ER chaperones. Against this background, our hypothesis was that IFN-gamma aggravates beta-cell ER stress by decreasing the ability of these cells to mount an adequate UPR. To test this hypothesis, we investigated whether IFN-gamma pre-treatment augments CPA-induced ER stress and beta cell death. The results obtained indicated that IFN-gamma pre-treatment potentiates CPA-induced apoptosis in INS-1E and primary beta-cells. This effect was specific for IFN-gamma since neither IL1-beta nor a low dose CPA pre-treatment potentiated CPA-induced apoptosis in INS-1E cells. These effects of IFN-gamma were mediated via the down regulation of genes involved in beta cell defense against ER stress, including the ER chaperones BiP, Orp150 and Grp94 as well as Sec61, a component of the ERAD pathway. This had functional consequences as evidenced by a decreased basal and CPA-induced activity of a reporter construct for the unfolded protein response element (UPRE) and augmented expression of the pro-apoptotic transcription factor Chop. <p>We next investigated the molecular regulation of the Chop gene in INS-1E cells in response to several pro-apoptotic and ER stress inducing agents, namely cytokines (IL1-beta and IFN-gamma), palmitate, or CPA. Detailed mutagenesis studies of the Chop promoter showed differential regulation of Chop transcription by these compounds. While cytokines (via NO production)- and palmitate-induced Chop expression was mediated via a C/EBP-ATF composite and AP-1 binding sites, CPA induction required the C/EBP-ATF site and the ER stress response element (ERSE). Cytokines, palmitate and CPA induced ATF4 protein expression and further binding to the C/EBP-ATF composite site, as shown by Western blot and EMSA experiments. There was also formation of distinct AP-1 dimers and binding to the AP-1 site after exposure to cytokines or palmitate. <p>\ / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
218

The integrated stress response directs cell fate decisions in response to perturbations in protein homeostasis

Teske, Brian Frederick 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Disruptions of the endoplasmic reticulum (ER) cause perturbations in protein folding and result in a cellular condition known as ER stress. ER stress and the accumulation of unfolded protein activate the unfolded protein response (UPR) which is a cellular attempt to remedy the toxic accumulation of unfolded proteins. The UPR is implemented through three ER stress sensors PERK, ATF6, and IRE1. Phosphorylation of the α-subunit of eIF2 by PERK during ER stress represses protein synthesis and also induces preferential translation of ATF4, a transcriptional activator of stress response genes. Early UPR signaling involves translational and transcriptional changes in gene expression that is geared toward stress remedy. However, prolonged ER stress that is not alleviated can trigger apoptosis. This dual signaling nature of the UPR is proposed to mimic a 'binary switch' and the regulation of this switch is a key topic of this thesis. Adaptive gene expression aimed at balancing protein homeostasis encompasses the first phase of the UPR. In this study we show that the PERK/eIF2~P/ATF4 pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi where ATF6 is activated. Liver-specific depletion of PERK significantly lowers expression of survival genes, leading to reduced expression of protein chaperones. As a consequence, loss of PERK in the liver sensitizes cells to stress which ultimately leads to apoptosis. Despite important roles in survival, PERK signaling is often extended to the vii activation of other downstream transcription factors such as CHOP, a direct target of ATF4-mediated transcription. Accumulation of CHOP is a hallmark of the second phase in the binary switch model where CHOP is shown to be required for full activation of apoptosis. Here the transcription factor ATF5 is found to be induced by CHOP and that loss of ATF5 improves the survival of cells following changes in protein homeostasis. Taken together this study highlights the importance of UPR signaling in determining the balance between cell survival and cell death. A topic that is important for understanding the more complex pathological conditions of diseases such as diabetes, cancer, and neurodegeneration.
219

Examining the Role of Endoplasmic Reticulum Stress in Pancreatic Beta-cell Biology

Teodoro, Tracy 31 August 2012 (has links)
Pancreatic beta-cells are responsible for secreting insulin into the circulation to maintain whole body glucose homeostasis. While pancreatic beta-cells have a large capacity to secrete insulin, their function progressively deteriorates during the pathogenesis of type 2 diabetes as a result of both genetic predisposition and environmental factors. Obesity is the largest risk factor for developing type 2 diabetes and is associated with various conditions that can impair normal beta-cell function, including excess free fatty acids, inflammation and insulin resistance. Accumulating evidence in the literature suggests that endoplasmic reticulum (ER) stress contributes to the molecular mechanism of pancreatic beta-cell failure during the progression of type 2 diabetes. In this thesis, I have examined the role of the ER stress sensor ATF6-alpha and also the ER-resident chaperone GRP78 in pancreatic beta-cell homeostasis and function. Work presented in Chapter 2 examined the function of naturally occurring ATF6-alpha protein variants associated with type 2 diabetes. I also examined the role of endogenous ATF6-alpha in pancreatic beta-cells, which is described in Chapter 3. Results from these analyses suggest that the ATF6-alpha gene is not a type 2 diabetes susceptibility gene; however, ATF6-alpha protein expression is important to beta-cell function and survival. Finally, ER stress markers have been detected in pancreatic beta-cells and insulin sensitive tissues (such as adipose and liver), which promote beta-cell dysfunction and insulin resistance, respectively. In Chapter 4, I examined the contribution of ER stress in beta-cell dysfunction specifically by generating transgenic mice over-expressing GRP78. The mice were subsequently challenged by high fat diet to determine their susceptibility to developing symptoms of type 2 diabetes. Indeed increased chaperone capacity in pancreatic beta-cells protected against obesity-induced glucose intolerance and insulin resistance. Overall, these data support the hypothesis that ER stress contributes to beta-cell dysfunction in type 2 diabetes progression.
220

The molecular basis for ER tubule formation

Brady, Jacob Peter January 2015 (has links)
Integral membrane proteins of the DP1 and reticulon families are responsible for maintaining the high membrane curvature required for both smooth ER tubules and the edges of ER sheets. Mutations in these proteins lead to motor neurone diseases such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain Reticulon Homology Domains (RHD) that have unusually long (&asymp;30 aa) hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilise membrane curvature. I have uncovered the secondary structure and dynamics of the DP1 protein Yop1p and identified a C-terminal conserved amphipathic helix that on its own interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming amphipathic helices. Together, these results indicate that amphipathic helices play a previously unrecognised role in RHD membrane curvature stabilisation. This work paves the way towards full structure determination of Yop1p by solution state NMR and marks the first high structural resolution study on an RHD protein.

Page generated in 0.068 seconds