• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 14
  • 11
  • 9
  • 7
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 104
  • 104
  • 68
  • 23
  • 19
  • 18
  • 15
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System

Zizzo, Ryan 18 February 2010 (has links)
This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly energy simulation models for six different building archetypes were created based on representative building characteristic and energy use data from the Toronto area. A genetic algorithm optimization tool was then created to vary scheduling and production properties of the ATES system and the relative number of different building archetypes. The tool found that a cooling season from weeks 16‐42 maximized the useful energy output of the ATES and resulted in roughly 30% reduction in heating and cooling energy use and associated GHG emissions. It was also found that creating a mix consisting of a higher percentage of larger buildings than is currently found in most neighbourhoods could reduce energy usage by an additional 10%.
32

Contemporary Strategies for Sustainable Design

Farias, Francisco 03 October 2013 (has links)
This exploratory research examined the degree of adoption and impact of the concepts of Building Information Model (BIM), Integrated Project Delivery (IPD), Integrated Design Process (IDP) and Building Energy Simulation (BES) on the design processes of advanced architectural firms when executing sustainable design. Six offices identified by the press for a strong commitment to sustainable design and influence in the design of high performance buildings were selected as cases. In semi-standardized interviews, these firms presented their perceptions of the influence of BIM, BES, and IPD/IDP. The results show that a generalization of sustainable design processes is possible. A design process for sustainability (DEPROSU) model was created by collecting best practices from data gathered from the interviews and the critical literature review. Secondary contributions show that BIM, IDP/IPD and BES have a synergistic effect in sustainable design methods, and that the human resource profile from these firms has evolved towards multi-skilled professionals knowledgeable in BES, BIM, parametric design, sustainability and construction processes. This research provides evidence of commonalities found in the design processes of the selected firms. These commonalities, which have been represented in the DEPROSU model, can potentially be validated as protocols or standards for sustainable design, providing architectural design practices with concrete patterns for improvement and or validation of their design methods.
33

Techno-Economic Assessment of Energy Transition toward High PV Penetration Grid: the case of Kyushu, Japan / 太陽光発電が大量導入された電力網へのエネルギー転換の技術経済的評価: 九州の場合

DUMLAO, SAMUEL MATTHEW GIRAO 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第23997号 / エネ博第433号 / 新制||エネ||82(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 石原 慶一, 教授 白井 康之, 准教授 尾形 清一 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
34

A Comparison of Energy Plus and eQUEST Whole Building Energy Simulation Results for a Medium Sized Office Building

January 2010 (has links)
abstract: With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation community. eQUEST is a powerful graphic user interface for the DOE-2 engine. EnergyPlus is the newest generation simulation program under development by the U.S. Department of Energy which adds new modeling features beyond the DOE-2's capability. The new modeling capabilities of EnergyPlus make it possible to model new and complex building technologies which cannot be modeled by other whole building energy simulation programs. On the other hand, EnergyPlus models, especially with a large number of zones, run much slower than those of eQUEST. Both eQUEST and EnergyPlus offer their own set of advantages and disadvantages. The choice of which building simulation program should be used might vary in each case. The purpose of this thesis is to investigate the potential of both the programs to do the whole building energy analysis and compare the results with the actual building energy performance. For this purpose the energy simulation of a fully functional building is done in eQUEST and EnergyPlus and the results were compared with utility data of the building to identify the degree of closeness with which simulation results match with the actual heat and energy flows in building. It was observed in this study that eQUEST is easy to use and quick in producing results that would especially help in the taking critical decisions during the design phase. On the other hand EnergyPlus aids in modeling complex systems, producing more accurate results, but consumes more time. The choice of simulation program might change depending on the usability and applicability of the program to our need in different phases of a building's lifecycle. Therefore, it makes sense if a common front end is designed for both these simulation programs thereby allowing the user to select either the DOE-2.2 engine or the EnergyPlus engine based upon the need in each particular case. / Dissertation/Thesis / M.S. Architecture 2010
35

Determinação dos coeficientes e avaliação das equações de desempenho de condicionadores de ar com vazão de refrigerante variável por Régis Altafini Machado

Machado, Regis Altafini January 2014 (has links)
Neste trabalho é feita uma simulação energética de um prédio de escritórios em Porto Alegre, utilizando um equipamento de ar condicionado de vazão de refrigerante variável (VRF) presente no exemplo do programa simulador (EnergyPlus). Com a carga térmica média (13.600 W) das cargas térmicas resultantes em cada zona térmica, se obteve um equipamento de ar condicionado comercial (unidade interna) com potência (14.000 W) que suprisse a carga térmica média. Através das tabelas do fabricante e do ajuste de curvas são encontradas as equações de desempenho do equipamento comercial e são traçados as curvas características. A seguir é feita uma nova simulação no prédio de escritórios, utilizando o equipamento comercial e comparando resultados com a simulação do equipamento de ar condicionado do exemplo como referência. São comparados os valores de consumo energético da edificação, cargas térmicas das serpentinas de expansão direta de resfriamento e de aquecimento e horas em que a temperatura da zona fica fora do ajuste do termostato no ano. A simulação demonstra que o equipamento VRF comercial (68.297,38 kWh) consome menos energia que o VRF do modelo do EnergyPlus (71.901,99 kWh). / In this dissertation is made an energy simulation of an office building in Porto Alegre, using a variable refrigerant flow air-conditioning (VRF) in this example model of the simulator program (EnergyPlus). With the average thermal load (13.600 W) of thermal loads resulting in each thermal zone, it got a commercial air conditioning unit (Internal unit) VRF with power (14.000 W) that provided the thermal loads of each zone. Through the tables of the manufacturer and the fitting curves are found performance equations of commercial device and their characteristics curves are plotted. The following is made a new office building simulation, using the commercial device and comparing the simulation results with the air conditioning of the example model as a reference. For the comparison are used the values of energy consumption building, the direct expansion cooling coil heat load, the direct expansion heating coil and the annual hours when the temperature zone was outside of set point the thermostat. The simulation shows that the VRF commercial equipment consumes less energy (68.297,38 kWh) than the VRF equipment of EnergyPlus model (71.901,99 kWh).
36

Statistical and Graphical Methods to Determine Importance and Interaction of Building Design Parameters to Inform and Support Design Decisions

January 2015 (has links)
abstract: This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods to derive all realistic ‘near-optimum’ solutions which might be lost using a simple optimization technique. DOE prototype medium office building compliant with ASHRAE 90.1-2010 was selected for the analysis and four different HVAC systems in three US climates were simulated. The interaction between building design parameters related to envelope characteristics and geometry (total of seven variables) has been studied using two different statistical methods, namely the ‘Morris method’ and ‘Predictive Learning via Rule Ensembles’. Subsequently, a simple graphical tool based on sensitivity analysis has been developed and demonstrated to present the results from parametric simulations. This tool would be useful to better inform design decisions since it allows imposition of constraints on various parameters and visualize their interaction with other parameters. It was observed that the Radiant system performed best in all three climates, followed by displacement ventilation system. However, it should be noted that this study did not deal with performance optimization of HVAC systems while there have been several studies which concluded that a VAV system with better controls can perform better than some of the newer HVAC technologies. In terms of building design parameters, it was observed that ‘Ceiling Height’, ‘Window-Wall Ratio’ and ‘Window Properties’ showed highest importance as well as interaction as compared to other parameters considered in this study, for all HVAC systems and climates. Based on the results of this study, it is suggested to extend such analysis using statistical methods such as the ‘Morris method’, which require much fewer simulations to categorize parameters based on their importance and interaction strength. Usage of statistical methods like ‘Rule Ensembles’ or other simple visual tools to analyze simulation results for all combinations of parameters that show interaction would allow designers to make informed and superior design decisions while benefiting from large reduction in computational time. / Dissertation/Thesis / Masters Thesis Built Environment 2015
37

Determinação dos coeficientes e avaliação das equações de desempenho de condicionadores de ar com vazão de refrigerante variável por Régis Altafini Machado

Machado, Regis Altafini January 2014 (has links)
Neste trabalho é feita uma simulação energética de um prédio de escritórios em Porto Alegre, utilizando um equipamento de ar condicionado de vazão de refrigerante variável (VRF) presente no exemplo do programa simulador (EnergyPlus). Com a carga térmica média (13.600 W) das cargas térmicas resultantes em cada zona térmica, se obteve um equipamento de ar condicionado comercial (unidade interna) com potência (14.000 W) que suprisse a carga térmica média. Através das tabelas do fabricante e do ajuste de curvas são encontradas as equações de desempenho do equipamento comercial e são traçados as curvas características. A seguir é feita uma nova simulação no prédio de escritórios, utilizando o equipamento comercial e comparando resultados com a simulação do equipamento de ar condicionado do exemplo como referência. São comparados os valores de consumo energético da edificação, cargas térmicas das serpentinas de expansão direta de resfriamento e de aquecimento e horas em que a temperatura da zona fica fora do ajuste do termostato no ano. A simulação demonstra que o equipamento VRF comercial (68.297,38 kWh) consome menos energia que o VRF do modelo do EnergyPlus (71.901,99 kWh). / In this dissertation is made an energy simulation of an office building in Porto Alegre, using a variable refrigerant flow air-conditioning (VRF) in this example model of the simulator program (EnergyPlus). With the average thermal load (13.600 W) of thermal loads resulting in each thermal zone, it got a commercial air conditioning unit (Internal unit) VRF with power (14.000 W) that provided the thermal loads of each zone. Through the tables of the manufacturer and the fitting curves are found performance equations of commercial device and their characteristics curves are plotted. The following is made a new office building simulation, using the commercial device and comparing the simulation results with the air conditioning of the example model as a reference. For the comparison are used the values of energy consumption building, the direct expansion cooling coil heat load, the direct expansion heating coil and the annual hours when the temperature zone was outside of set point the thermostat. The simulation shows that the VRF commercial equipment consumes less energy (68.297,38 kWh) than the VRF equipment of EnergyPlus model (71.901,99 kWh).
38

Determinação dos coeficientes e avaliação das equações de desempenho de condicionadores de ar com vazão de refrigerante variável por Régis Altafini Machado

Machado, Regis Altafini January 2014 (has links)
Neste trabalho é feita uma simulação energética de um prédio de escritórios em Porto Alegre, utilizando um equipamento de ar condicionado de vazão de refrigerante variável (VRF) presente no exemplo do programa simulador (EnergyPlus). Com a carga térmica média (13.600 W) das cargas térmicas resultantes em cada zona térmica, se obteve um equipamento de ar condicionado comercial (unidade interna) com potência (14.000 W) que suprisse a carga térmica média. Através das tabelas do fabricante e do ajuste de curvas são encontradas as equações de desempenho do equipamento comercial e são traçados as curvas características. A seguir é feita uma nova simulação no prédio de escritórios, utilizando o equipamento comercial e comparando resultados com a simulação do equipamento de ar condicionado do exemplo como referência. São comparados os valores de consumo energético da edificação, cargas térmicas das serpentinas de expansão direta de resfriamento e de aquecimento e horas em que a temperatura da zona fica fora do ajuste do termostato no ano. A simulação demonstra que o equipamento VRF comercial (68.297,38 kWh) consome menos energia que o VRF do modelo do EnergyPlus (71.901,99 kWh). / In this dissertation is made an energy simulation of an office building in Porto Alegre, using a variable refrigerant flow air-conditioning (VRF) in this example model of the simulator program (EnergyPlus). With the average thermal load (13.600 W) of thermal loads resulting in each thermal zone, it got a commercial air conditioning unit (Internal unit) VRF with power (14.000 W) that provided the thermal loads of each zone. Through the tables of the manufacturer and the fitting curves are found performance equations of commercial device and their characteristics curves are plotted. The following is made a new office building simulation, using the commercial device and comparing the simulation results with the air conditioning of the example model as a reference. For the comparison are used the values of energy consumption building, the direct expansion cooling coil heat load, the direct expansion heating coil and the annual hours when the temperature zone was outside of set point the thermostat. The simulation shows that the VRF commercial equipment consumes less energy (68.297,38 kWh) than the VRF equipment of EnergyPlus model (71.901,99 kWh).
39

A reality-based cost-benefit analysis of high performance residences in Victoria, BC

Wilson, Eric 30 April 2018 (has links)
This research initiative attempts to empirically determine, with reality-based evidence from un-biased sources, the cost disadvantage, energy advantage, and expected pay-back period associated with building an above-code residence in Victoria, BC. In addition, this initiative created a much-needed benchmark for contractors to gain a firm understanding of the construction details required to achieve the various levels of the “Step-Code” in the newest edition of the BCBC. It was important to gain this information specific to Victoria B.C. to make an appropriate estimation of the actual “cost challenge” for building above code in the local housing market. This was accomplished through: a simulated tendering process with local contractors, an energy analysis of a case-study residence with the same floor plan, and an in-depth study into the variables governing time-to-amortization. The contractors provided quotes for an “above code” residence (ACR), and a minimum-code residence (MCR) with the same floor plan. The results were then compared to the as-built construction costs of the residence. When compared to the MCR, it was found that the ACR has a cost-disadvantage of approximately 22.5% ($74,400), an energy advantage of 22.5 kWh/m2/yr , and a payback period of over 79 years when a fuel inflation rate of 2% is considered. However, many of the components in the ACR assemblies were either for aesthetic appeal (metal-roofing), or comfort (floor-cavity insulation), and therefore it was possible to reduce the cost-disadvantage to just 2.1% ($7,759), while maintaining an energy advantage of 15kWh/m2/yr and step-level 3 designation. This was dubbed the hybrid-residence (HR) as it employed a combination of above-code and minimum-code construction assemblies. The HR has a pay-back period of approximately 16 years when the same inflation rate is expected in the price of fuel. / Graduate
40

Climate change, renewable energy and population impact on future energy demand for Burkina Faso built environment

Ouedraogo, Bachir Ismael January 2012 (has links)
This research addresses the dual challenge faced by Burkina Faso engineers to design sustainable low-energy cost public buildings and domestic dwellings while still providing the required thermal comfort under warmer temperature conditions caused by climate change. Past and potential climate induced future energy demand for air conditioning has been investigated. It was found based on climate change SRES scenario A2 that predicted mean temperature in Burkina Faso will increase by 2°C between 2010 and 2050. Therefore, in order to maintain a thermally comfortable 25°C inside public buildings, the projected annual energy consumption for cooling load will increase by 15%, 36% and 100% respectively for the period between 2020 to 2039, 2040 to 2059 and 2070 to 2089 when compared to the control case. It has also been found that a 1% increase in population growth will result in a 1.38% and 2.03% increase in carbon emission from primary energy consumption and future electricity consumption respectively. Furthermore, this research has investigated possible solutions for adaptation to the severe climate change and population growth impact on energy demand in Burkina Faso. It has been found that shading devices could potentially reduce the cooling load by up to 40%. Computer simulation programming of building energy consumption and a field study has shown that adobe houses have the potential of significantly reducing energy demand for cooling and offer a formidable method for climate change adaptation. Finally this research has shown, based on the Net Present Cost that hybrid photovoltaic (PV) and Diesel generator energy production configuration is the most cost effective local electricity supply system, for areas without electricity at present, with a payback time of 8 years when compared to the business as usual diesel generator stand-alone configuration. It is therefore a viable solution to increase electricity access to the majority of the population.

Page generated in 0.1051 seconds