• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy efficient wired networking

Chen, Xin January 2015 (has links)
This research proposes a new dynamic energy management framework for a backbone Internet Protocol over Dense Wavelength Division Multiplexing (IP over DWDM) network. Maintaining the logical IP-layer topology is a key constraint of our architecture whilst saving energy by infrastructure sleeping and virtual router migration. The traffic demand in a Tier 2/3 network typically has a regular diurnal pattern based on people‟s activities, which is high in working hours and much lighter during hours associated with sleep. When the traffic demand is light, virtual router instances can be consolidated to a smaller set of physical platforms and the unneeded physical platforms can be put to sleep to save energy. As the traffic demand increases the sleeping physical platforms can be re-awoken in order to host virtual router instances and so maintain quality of service. Since the IP-layer topology remains unchanged throughout virtual router migration in our framework, there is no network disruption or discontinuities when the physical platforms enter or leave hibernation. However, this migration places extra demands on the optical layer as additional connections are needed to preserve the logical IP-layer topology whilst forwarding traffic to the new virtual router location. Consequently, dynamic optical connection management is needed for the new framework. Two important issues are considered in the framework, i.e. when to trigger the virtual router migration and where to move virtual router instances to? For the first issue, a reactive mechanism is used to trigger the virtual router migration by monitoring the network state. Then, a new evolutionary-based algorithm called VRM_MOEA is proposed for solving the destination physical platform selection problem, which chooses the appropriate location of virtual router instances as traffic demand varies. A novel hybrid simulation platform is developed to measure the performance of new framework, which is able to capture the functionality of the optical layer, the IP layer data-path and the IP/optical control plane. Simulation results show that the performance of network energy saving depends on many factors, such as network topology, quiet and busy thresholds, and traffic load; however, savings of around 30% are possible with typical medium-sized network topologies.
2

Plant Level IIoT Based Energy Management Framework

Koshy, Liya Elizabeth 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Energy Monitoring Framework, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology. The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely. The main objectives of the project include the following: • Set up a wireless network using sensors and smart implants with a base station/ controller. • Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency. • Set up a generalized interface to collect and process the sensor data values and store the data in a database. • Design and develop a generic database compatible with various companies irrespective of the type and size. • Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment. The General Structure of the project constitutes the following components: • A wireless sensor network with a base station. • An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators. • A cloud that hosts a database and an API to collect and store information. • A web application hosted in the cloud to provide an interactive platform for users to analyze the data. The project was demonstrated in: • Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/). • Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/). • A company in Indiana. The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.

Page generated in 0.0694 seconds