Spelling suggestions: "subject:"conergy storage"" "subject:"coenergy storage""
441 |
Energilagring med pumpkraft i gruvor : En utredning av potentialen för långtidslagring i Sveriges energisystem / Underground pumped hydro energy storage in abandoned minesSederholm, Alexandra, Ågren, Sophie January 2022 (has links)
This thesis is divided in two sections. The first part consists of an interview study with 10 participants to investigate how the industry views the demand for energy storage and how it may develop in the future. Although some views differed, the study showed that a great responsibility lies on the existing hydropower. Batteries are believed to have the greatest potential as short-term storage. The participants agree that hydrogen could have great potential as a flexibility service. The future for Underground Pumped Hydro Energy Storage (UPHES) in Sweden have the participants divided but they seem to agree on the fact that the potential will depend on how price variations develop on the electricity market. Lastly, the industry agreed that a variety of energy storage technologies will be needed for the future energy system. The second part of the study is a deeper investigation into what energy deficit and demand for long-term energy storage (longer than 8 hours) might occur in the future and how UPHES may help shorten the longest deficits. To determine the need for energy storage, the scenario Electrification Renewable from a Svenska Kraftnät (Svk) report was chosen to represent the future energy system for year 2045. The result showed that depending on how the need for energy storage is defined, the amount of energy demand and therefore UPHES facilities, varied. If the need for energy storage was dimensioned regarding the average year it would result in 0,21 TWh of long-term energy deficits and 28 facilities would be enough to cover all of them. If the number of facilities was increased, the result showed a lower usage of all the facilities. However, if the need for energy storage was dimensioned regarding the ''worst case scenario'', the longest deficit out of 35 years, the energy demand in the long deficits was 14 TWh. If 28 facilities were used only 11 % of the energy demand in the long deficits would be covered. If the number of facilities increased, 172 facilities would cover 32 % of the energy demand in the long deficits and 1834 facilities would cover 60 %.
|
442 |
Mesoscale Physics of Electrified Interfaces with Metal ElectrodesBairav Sabarish Vishnugopi (15302419) 17 April 2023 (has links)
<p>Li-ion batteries (LIBs) are currently pervasive across portable electronics and electric vehicles and are on the ascent for large-scale applications such as grid storage. However, commercial LIBs based on intercalation chemistries are inching toward their theoretical energy density limits. Consequently, the rapidly growing demands of energy storage have necessitated a recent renaissance in exploring battery systems beyond Li-ion chemistry. Next-generation batteries that utilize Li metal as the anode can improve the energy density and power density of LIBs. Despite the theoretical promise, the commercialization of metal-based batteries requires overcoming several hurdles, stemming from the unstable nature of Li in liquid electrolytes. Upon repeated charging, the metal anode undergoes unrestricted growth of dendrites, devolving to a thermal runaway in extreme circumstances. By replacing the organic liquid electrolyte with a non-flammable solid electrolyte, solid-state batteries (SSBs) can potentially provide enhanced safety attributes over liquid electrolyte cells. Upon pairing of solid electrolytes with a Li metal anode, such systems present the unique possibility of engineering batteries with high energy density and fast charging rates. However, there are a number of technical challenges and fundamental scientific advances necessary for SSBs to achieve reliable electrochemical performance. The formation of dendritic morphologies during charging and the loss of active area at the anode-electrolyte interface during discharging are two critical limitations that need to be addressed.</p>
<p>In this thesis, the morphological stability of the Li metal anode is examined based on the mechanistic interaction of electrochemical reaction, ionic transport and surface self-diffusion, that is further dependent on aspects including the thermal field and electrolyte composition. The origin of electrochemical-mechanical instability and metal penetration due to heterogeneities in solid-state electrolytes such as grain boundaries will be analyzed. The phenomenon of contact loss at solid-solid interfaces due to the competing interaction between electrochemical dissolution and Li mechanics will be studied. Lastly, the mechanistic attributes governing the thermal stability of solid-solid interfaces in solid-state batteries will be examined. Overall, the dissertation will focus on understanding the fundamental mechanisms underlying the evolution of solid-liquid and solid-solid interfaces in energy storage and derive potential design guidelines toward achieving stable morphologies in metal-based batteries.</p>
|
443 |
Heat and mass transfer modeling of high-temperature moving-bed thermochemical reactorsKorba, David 08 August 2023 (has links) (PDF)
With the global deployment of renewable energy generation at record rates, clean energy is steadily becoming competitive with its fossil-fuel counterparts. However, further expansion is limited by the inherent intermittency of renewable energy sources (solar, wind, wave, etc.), which typically do not match with daily and seasonal variations of global (and local) energy demand. Thermochemical energy storage (TCES) has demonstrated strong potential in being a technological pathway to provide on-demand process heat and handle the intrinsic variations in renewable energy generation and energy demand. TCES works on the premise of excess renewable heat driving an endothermic reduction reaction, in which thermal energy is converted to chemical potential energy. The reversed exothermic oxidation reaction is subsequently triggered (on-demand) to recover thermal energy which can be used as process heat.
While the benefits of TCES have been demonstrated experimentally at the lab-scale, accurate numerical modeling of TCES reactors is key for future development, optimization, and implementation of large industrial-scale energy storage systems. This dissertation focuses on the development of continuum-scale models to accurately simulate and predict performance of high temperature (up to 1500 °C) moving-bed reactors for TCES. The efficacy of present volume- averaging approaches is briefly reviewed, with the major focus of the work on the development of multi-dimensional multi-physics models of increasing complexity for moving-bed TCES reduction and oxidation reactors.
|
444 |
REDOX ORGANIC DEEP EUTECTIC SOLVENT ELECTROLYTES FOR ADVANCED ENERGY STORAGESinclair, Nicholas January 2022 (has links)
No description available.
|
445 |
Advancement of Supercapacitor in Automotive ApplicationsMohan, Murali, Vijayan, Sreekanth January 2023 (has links)
The rising use of fossil fuels and the resulting rise in environmental harm have fueled the advancement of automobiles that are fuel-efficient. A severe existential challenge facing the planet earth has given rise to hybrid electric vehicles (HEVs), which have developed from their incipient stage and are shown promise as a solution. Additionally, when needed to produce peaking power, batteries' efficiency is reduced. Instead, supercapacitors have smaller energy storage capacity but can withstand peaking power. Designing a clever method to manage the energy balance between a supercapacitor and a battery is the main goal of this research. Different topologies are used to study the battery-supercapacitor energy storage system in great detail. Nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and other harmful gases are less released when a battery-supercapacitor energy storage system is integrated. Additionally, it can lower the load on the battery, extending its life and improving its performance in HEVs.
|
446 |
Solar industrial heating with a hybrid solar collectors’ configuration and thermal storage : Dynamic simulation and techno-economic analysisSubirats Gonzalez, Gisela January 2023 (has links)
This study investigates the feasibility and performance of a hybrid system integrating photovoltaic (PV) and solar thermal technologies for industrial process heat. By analyzing various parameters including cost, income, energy production, and system specifications, valuable insights are obtained. The study explores the potential of solar heating (SH) systems as a renewable thermal energy source for industrial processes, overcoming challenges of high costs and limited fossil fuel usage in industrial facilities through hybrid configurations. Data analysis includes cost analysis, income generation, energy balance, and system specifications such as temperature ranges, collector sizes, and efficiencies. While acknowledging limitations in simulation simplifications and the use of a single load profile, the study presents conclusions on the system's economic viability, technical capabilities, and potential applications. The findings highlight the importance of hybrid PV and solar thermal systems in enhancing energy efficiency and promoting renewable energy adoption in industrial process heating.
|
447 |
Transient Stability Analysis of Power Systems with Energy StorageWENG, CHIYUAN 12 March 2013 (has links)
No description available.
|
448 |
CONFINED LAYERED POLYMERIC SYSTEMS FOR PACKAGING ANDCAPACITOR APPLICATIONSCarr, Joel Matthew 16 August 2013 (has links)
No description available.
|
449 |
Graphene-based Materials for Electrochemical Energy StorageYang, Hao January 2017 (has links)
No description available.
|
450 |
Älvsystem med lokal energiproduktion : En studie för att undersöka samspelet mellan elbehov, solceller, batterilagring och vattenkraft i mindre lokala elnätOlsson, David January 2022 (has links)
Samhällets beroende av fossila bränslen leder till en varmare atmosfär och högre havsnivåer. För att bromsa utvecklingen måste utsläppen minska. En lösning är att implementera förnybara elproduktionsanläggningar och energilagring i större utsträckning. Då Sveriges vattenkraftsutbyggnad har stannat av de senaste 30 åren behövs en implementering av andra förnybara metoder, i kombination med den redan utbyggda vattenkraften, för att förse framtidens elbehov. För arbetet ligger fyra olika orter med redan installerade vattenkraftverk i fokus, nämligen Fredriksberg, Hällefors, Grythyttan och Sävenfors. Syftet med arbetet är att se hur man kan integrera solcellsanläggningar med och utan batterienergilagring i redan installerade vattenkraftsystem för energiproduktion i mindre lokala elnät. Målet med arbetet är indelat i två olika delmål. Det första målet är att få fram hur stora solcellsanläggningar som är implementerbara i mindre orter utifrån ett ekonomiskt perspektiv, det vill säga hur stor kapacitet som är möjligt att installera samtidigt som anläggningen är ekonomiskt lönsam. Det andra delmålet är att få fram hur stor del av orternas egna elbehov som kan täckas med vattenkraft, solceller och med eller utan batterilagring. En modell för systemet byggdes i Simulink, där vattenkraften antogs producera kontinuerligt över året vid vissa tider på dygnet. En känslighetsanalys gjordes på solcellsanläggningarnas ekonomiska lönsamhet vid olika framtidsscenarier gällande elprisutveckling i Sverige fram till år 2050. Resultat från simuleringar visar på att orterna får olika hög grad ekonomisk lönsamhet vid olika mängd installerad kapacitet solceller. Generellt ger ett högre elbehov och ett lägre förhållande mellan producerad el från vattenkraft och elbehov ekonomisk möjlighet att installera större solcellsanläggningar. Gällande de olika framtidsscenarierna finns det vissa scenarier som kan förlänga solcellsanläggningarnas återbetalningstid. Ett scenario, med stor implementering av småskalig förnybar energi i Sverige, medför att mindre kapacitet solceller bör installeras för att garantera ekonomisk säkerhet för investeringen. Batterilagring bidrar till ett ökat försett behov då det finns ett överskott på producerad el från solcellerna. Andelen egenförsett behov ökar dock mer på orter där vattenkraften är mindre dominerande. Det kan bero på att det finns fler tillfällen då det kan förse ett elbehov på orten, vilket vattenkraften annars tagit över i andra orter. En viktig grundpelare till att batterilagringen inte resulterar i en ekonomisk förlust är multifunktionen att förse eget behov och vara kopplad till en stödtjänst. Stödtjänsten är en uppreglering av nätets frekvensvariation vilket behöver prioriteras över stora delar av dygnet. Över de tre olika orterna resulterade förhållandet installerad MWp solceller genom MWh batterier på cirka 3. / Society's dependency on fossil fuels leads to a warmer atmosphere and rising sea levels. Emission levels need to be reduced to slow down this development. One solution is to implement renewable energy and renewable energy storage systems on a wider scale. Sweden’s expansion of hydro power has come to a stop 30 years ago, which leads the focus to other methods of renewable energy generation in combination with the already built hydro power plants for future energy supply. This work focuses on already built-in hydro power plants in smaller communities as Fredriksberg, Hällefors, Grythyttan and Sävenfors. The scope of this work is to investigate the possibilities of integrating photovoltaic systems, with and without battery energy storage, in operating hydro power plants in smaller local grids. The goal of this work is divided into two sub-goals. The first sub-goal is to find out what size of photovoltaic systems can be implemented in smaller communities from an economic perspective, that is, how much capacity is possible to install at the same time as the plant is economically profitable. The other sub-goal is to find out how much of the communities’ own electrical demands are covered with hydro power, photovoltaics and with or without battery energy storage. A model was built in Simulink, where the hydro power was assumed to produce electricity continuously throughout the year at certain times of the day. A sensitivity analysis was performed on the profitability of the photovoltaic systems using different scenarios for the future electrical price in Sweden until the year of 2050. Results from the simulations show that different communities have different degrees of profitability for varying capacities of photovoltaics. A higher electricity demand and a lower ratio between produced electricity from hydro power and electricity demand provides financial opportunities to install larger capacities of photovoltaic systems. Regarding the future price scenarios, there are some scenarios that will prolong the photovoltaics payback-time. One scenario, with a great implementation of small-scale renewable systems, results in a recommendation to install lower capacities of photovoltaics to ensure financial security on the investment. Battery energy storage contributes to increased provided demands because of the surplus electricity produced from the photovoltaics. The proportion of provided demands is increasing more in communities where hydro power is less available. It can be a result of opportunities where the hydro usually is providing needs in those timeframes in other communities. An important pillar in the positive result of the economy of battery energy storage is its multifunction to supply demands and provide a support service, where the service of regulating frequency on the main grid needs to be prioritized over large parts of the day. The ratio between installed MWp photovoltaics and MWh battery energy storage resulted in approximately three across three different communities.
|
Page generated in 0.1244 seconds