• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Závodní zážehový přeplňovaný motor / Racing Turbocharged SI Engine

Kopeček, Martin January 2014 (has links)
This thesis deals with the adjustment racing turbocharged SI engine. The main objective was to design a suitable type of turbocharger and changes needed for proper engine operation. The upgrades were based on the stock Mitsubishi 4G63T engine.
2

Studies on SI engine simulation and air/fuel ratio control systems design

Bai, Yang January 2013 (has links)
More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards.
3

The Potential of Using Natural Gas in HCCI Engines: Results from Zero- and Multi-dimensional Simulations

Zheng, Junnian 2012 May 1900 (has links)
With the depletion of petroleum based fuels and the corresponding concerns of national energy security issues, natural gas as an alternative fuel in IC engine applications has become an attractive option. Natural gas requires minimum mixture preparation, and is chemically stable, both of which make it a suitable fuel for homogeneous charged compression ignition (HCCI) engines. Compared to petroleum based fuels, natural gas produces less green-house emissions. However, natural gas is hard to auto-ignite and therefore requires a higher compression ratio, some amount of intake heating, or some type of pre-ignition. In addition, natural gas usually has large differences in fuel composition from field to field, which adds more uncertainties for engine applications. The current study determines the auto-ignition characteristics, engine performance, and nitric oxides emissions as functions of major operating parameters for a natural gas fueled HCCI engine, and determines differences relative to gasoline fueled HCCI engines which have been studied for many years. These tasks have been done using both zero- and multi-dimensional engine simulations. By zero-dimensional simulation, the effects of varying equivalence ratios, engine speeds, compression ratio, EGR level, intake pressure and fuel compositions are determined and analyzed in detail. To be able to account for the in-cylinder inhomogeneous effect on the HCCI combustion, multi-zone models coupled with cold-flow CFD simulations are employed in addition to the single-zone model. The effects of non-homogeneous temperature and equivalence ratio stratification on the ignition timing, combustion phasing, and emissions formation have been studied and discussed. Finally, the preliminary two-dimensional axial-symmetric CFD simulations have been conducted to study the in-cylinder temperature and the species distributions, which provide better visualization of the natural gas auto-ignition process.
4

Double Compression Expansion Engine: Evaluation of Thermodynamic Cycle and Combustion Concepts

Shankar, Vijai 11 1900 (has links)
The efficiency of an internal combustion (IC) engine is governed by the thermodynamic cycle underpinning its operation. The thermodynamic efficiency of these devices is primarily determined by the temperature gradient created during the compression process. The final conversion efficiency also known as brake thermal efficiency (BTE) of IC engines, however, also depend on other processes associated with its operation. BTE is a product of the combustion, thermodynamic, gas-exchange, and mechanical efficiencies. The improvement of BTE through maximation of any one of the four efficiencies is reduced by its implication of the other three. Split-cycle engine provides an alternative method of improving the engine efficiency through over-expansion of combustion gases by transferring it to a cylinder of greater volume. The operation of split-cycle engines is based on either the Brayton or the Atkinson Cycles. Atkinson Cycle has been demonstrated in IC engines without the split-cycle architecture but is limited by the reduced energy density. Double Compression Expansion Engine (DCEE) provides a method of accomplishing the Atkinson Cycle without the constraints faced in conventional engine architectures. DCEE splits the compression and expansion processes in a vertical manner that enables the use of larger cylinder volumes for over-expansion as well as first-stage compression without much friction penalties. The present thesis explores the thermodynamic cycle of this novel engine architecture using well-validated 1-dimensional engine models solving for gas-exchange, real gas properties, and heat transfer provided in the GT-Power software tool. The effect of compression ratio, rate of heat addition, sensitivity to design and modeling parameters was assessed and contrasted against conventional engine architecture. The synergies of combining low-temperature combustion (LTC) concepts with DCEE was investigated using simulation and experimental data. DCEE relaxes many constraints placed the operation of an engine in Homogenous Charge Compression Ignition (HCCI) mode. The limitations of adopting Partially Premixed Combustion (PPC) concept is also alleviated by the DCEE concept. BTE improvement of above 10% points is achievable through the DCEE concept along with possibility to achieve very low emissions through use of LTC concepts and new after-treatment methods uniquely available to the DCEE.
5

<b>ENHANCING ENGINE RELIABILITY IN MARINE AND MINING APPLICATIONS: A COMPREHENSIVE STUDY OF FAULT ANALYSIS AND VALIDATION-BASED DAMAGE MODELING</b>

Anushka George (19320724) 02 August 2024 (has links)
<p dir="ltr">Ensuring the reliability and efficiency of engines in marine and mining applications is critical for operational safety and performance. This thesis explores two interconnected areas of engine reliability: the analysis of marine diesel engine faults and the development of a framework that linked together the vehicle simulation model developed by Cummins and the damage model developed by Cummins. The first part of the research describes a comprehensive literature survey on common faults in marine diesel engines, focusing on issues such as fuel system failures, turbocharger malfunctions, and cooling system inefficiencies. Additionally, it investigates various hardware redundancy strategies to mitigate these faults and enhance engine reliability. The findings demonstrated that hardware redundancy is expected to reduce the likelihood of engine failure by ensuring continuous operation even in the event of component malfunctions. </p><p dir="ltr">The second part of the research centers on the development and validate of a framework that links the Cummins vehicle simulation tool and Cummins damage modeling tool to perform damage calculations for mine haul truck engines. The validation of the framework ensures the accuracy of simulation models, which is crucial for predictive maintenance and performance optimization. The validated data is then used in various damage models to estimate and compare the damage accumulation in diesel and hybrid engine scenarios for mine haul applications. The findings provide insights into these engines' relative durability and performance under real-world conditions for this specific duty cycle. Notably, the comparative analysis revealed that hybrid engines tend to accumulate higher levels of oxidation and creep damage in components such as the exhaust manifold and turbine housing. In contrast, diesel engines are more susceptible to high cycle fatigue and wear in components like the piston rings and cylinder heads. </p><p dir="ltr">This thesis aims to bridge the gap between theoretical research and practical application by combining a thorough literature review, empirical validation, and damage modeling using tools developed by Cummins. </p>
6

Desenvolvimento de um motor de combustão interna para Fórmula SAE / Development of an internal combustion engine for Formula SAE

Moritz, Henrique 01 September 2015 (has links)
A presente dissertação trata do projeto de um motor de combustão interna de quatro tempos, ciclo Otto, destinado à categoria de competição Formula SAE, adequado ao mercado brasileiro. Uma extensa pesquisa bibliográfica e de mercado foi realizada para o direcionamento do projeto, além de análises experimentais para obtenção de dados. No estudo experimental foi utilizado um motor monocilíndrico de 300 cc de deslocamento volumétrico, arrefecido a ar, oriundo de uma motocicleta comercial atual, denominado nesta dissertação como \"motor base\". Esse motor foi instalado em uma bancada de dinamômetro e instrumentado de forma a permitir sua avaliação mecânica e termodinâmica. Estudos de desempenho, análises de combustão e emissões também foram realizados, incluindo utilização de etanol, variações da razão ar/combustível e sobrealimentação. Igualmente, foram feitos ensaios experimentais de componentes específicos utilizados no projeto. Os dados experimentais foram utilizados como parâmetros para o projeto mecânico do novo motor Formula SAE, e para a modelagem e simulação do motor base em fluidodinâmica computacional unidimensional (CFD-1D), que foi utilizada como ferramenta auxiliar do projeto. O escopo do projeto mecânico do motor foi restrito ao bloco, virabrequim e alguns componentes de integração, uma vez que todos os demais componentes foram extraídos do motor base e de outros motores presentes no mercado nacional. O motor Formula SAE foi projetado em ambiente computacional (CAD), sendo que para o projeto mecânico do bloco e virabrequim foram realizadas simulações computacionais estruturais, utilizando o método dos elementos finitos (FEA), para verificação da distribuição de tensões nos componentes projetados. O novo motor Formula SAE apresentou vantagens significativas em relação aos custos para aquisição de peças de montagem e reposição, e proporcionou flexibilidade de montagem e operação. / The present dissertation addresses the design of a 4 stroke Otto cycle internal combustion engine dedicated to Formula SAE student program and fitted to the Brazilian market. An extensive literature review and a market benchmark were performed, in order to provide guidance to the project, and experimental analysis for data acquisition. For the experimental study, a 300 cm3 single cylinder air cooled motorcycle engine has been used, taken from a motorcycle currently in production, available in Brazilian market, called in this dissertation as \"base engine\". This engine has been installed in a dynamometer test bench and instrumented in order to allow its mechanical and thermodynamic evaluation. Performance, combustion and emissions analysis were also performed, including ethanol fueling, air/fuel ratio variation and supercharging. Experimental tests with specific engine components were performed to provide necessary design data. The experimental data were used as input parameters for the mechanical design, as well as for modeling and simulation of the base engine on one-dimensional computer fluid dynamics, which was used as an auxiliary tool for this project. The scope of mechanical design of this engine was restrict to the crankcase, crankshaft and some assembly components, since all other components were taken from the base engine and other engines from the national market. The design was assisted by computer aided design (CAD). In order to verify the crankcase and crankshaft mechanical design regarding stress distribution, computational structural analysis have been performed using the finite element method (FEA). The new Formula SAE engine presented significant advantages regarding purchasing costs of parts for assembly and maintenance, and provided assembly and operation flexibility.
7

Desenvolvimento de um motor de combustão interna para Fórmula SAE / Development of an internal combustion engine for Formula SAE

Henrique Moritz 01 September 2015 (has links)
A presente dissertação trata do projeto de um motor de combustão interna de quatro tempos, ciclo Otto, destinado à categoria de competição Formula SAE, adequado ao mercado brasileiro. Uma extensa pesquisa bibliográfica e de mercado foi realizada para o direcionamento do projeto, além de análises experimentais para obtenção de dados. No estudo experimental foi utilizado um motor monocilíndrico de 300 cc de deslocamento volumétrico, arrefecido a ar, oriundo de uma motocicleta comercial atual, denominado nesta dissertação como \"motor base\". Esse motor foi instalado em uma bancada de dinamômetro e instrumentado de forma a permitir sua avaliação mecânica e termodinâmica. Estudos de desempenho, análises de combustão e emissões também foram realizados, incluindo utilização de etanol, variações da razão ar/combustível e sobrealimentação. Igualmente, foram feitos ensaios experimentais de componentes específicos utilizados no projeto. Os dados experimentais foram utilizados como parâmetros para o projeto mecânico do novo motor Formula SAE, e para a modelagem e simulação do motor base em fluidodinâmica computacional unidimensional (CFD-1D), que foi utilizada como ferramenta auxiliar do projeto. O escopo do projeto mecânico do motor foi restrito ao bloco, virabrequim e alguns componentes de integração, uma vez que todos os demais componentes foram extraídos do motor base e de outros motores presentes no mercado nacional. O motor Formula SAE foi projetado em ambiente computacional (CAD), sendo que para o projeto mecânico do bloco e virabrequim foram realizadas simulações computacionais estruturais, utilizando o método dos elementos finitos (FEA), para verificação da distribuição de tensões nos componentes projetados. O novo motor Formula SAE apresentou vantagens significativas em relação aos custos para aquisição de peças de montagem e reposição, e proporcionou flexibilidade de montagem e operação. / The present dissertation addresses the design of a 4 stroke Otto cycle internal combustion engine dedicated to Formula SAE student program and fitted to the Brazilian market. An extensive literature review and a market benchmark were performed, in order to provide guidance to the project, and experimental analysis for data acquisition. For the experimental study, a 300 cm3 single cylinder air cooled motorcycle engine has been used, taken from a motorcycle currently in production, available in Brazilian market, called in this dissertation as \"base engine\". This engine has been installed in a dynamometer test bench and instrumented in order to allow its mechanical and thermodynamic evaluation. Performance, combustion and emissions analysis were also performed, including ethanol fueling, air/fuel ratio variation and supercharging. Experimental tests with specific engine components were performed to provide necessary design data. The experimental data were used as input parameters for the mechanical design, as well as for modeling and simulation of the base engine on one-dimensional computer fluid dynamics, which was used as an auxiliary tool for this project. The scope of mechanical design of this engine was restrict to the crankcase, crankshaft and some assembly components, since all other components were taken from the base engine and other engines from the national market. The design was assisted by computer aided design (CAD). In order to verify the crankcase and crankshaft mechanical design regarding stress distribution, computational structural analysis have been performed using the finite element method (FEA). The new Formula SAE engine presented significant advantages regarding purchasing costs of parts for assembly and maintenance, and provided assembly and operation flexibility.
8

Stanovení parametrů matematického modelu řídicí jednotky spalovacího motoru / Setting the parameters of the mathematical model of the Engine ECU

Vychopeň, David January 2015 (has links)
Master’s thesis is focused on creating a suitable methodology for determining the parameters of the electronic control unit of the engine. Discusses how the measurement of input data into the methodology, the basic description of its functions and display the resulting values. It includes evaluation of applicability of the methodologies and the real parameters when compared with the parameters established on the basis of established methodology.
9

Multi-Physics Engine Simulation Framework for Drive Cycle Emissions Prediction. Development and Validation of a Framework for Transient Drive Cycle NOx Prediction Modelling based on Combining 1-D and 0-D Internal Combustion Engine Simulation and Statistical Meta-Modelling

Korsunovs, Aleksandrs January 2019 (has links)
The full text will be available at the end of the embargo period: 4th Aug 2025
10

Návrh sportovních vaček pro motocyklový motor / Design of sport cams for motorcycle engine

Závodník, Michal January 2015 (has links)
The master thesis contains a theoretical part with the topic of valve train. It contains measured data and their processing. The processed data are used to create the 1D engine’s simulation. Valve train’s parameters were modified for increased power and torque. Contained two variants of changes can serve as guide for final draft because of next adjustments.

Page generated in 0.0967 seconds