• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultimate strength of AL-6XN stainless steel plates and box columns under axial compression and shear loads /

Therdphithakvanij, Pholdej, January 2005 (has links)
Thesis (Ph. D.)--Lehigh University, 2005. / In two parts. Includes vita. Includes bibliographical references (leaves 404-413).
2

Flexural steel anchorage performance at diagonal crack locations /

Triska, Mary Ann. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 112-115). Also available on the World Wide Web.
3

Determining the R values for 12 inch deep Z-purlins and girts with through-fastened panels under suction loading

Wibbenmeyer, Kaye Dee, January 2010 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed July 26, 2010) Includes bibliographical references (p. 58-59).
4

Evaluation of wall systems subjected to lateral pressure for blast resistant design /

Brown, Jeffrey Allen, January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 107-108). Also available on the Internet.
5

Ductility capacity of HPS70W net-section tensile members /

Gardner, Christopher Andrew. January 2001 (has links)
Thesis (M.S.)--University of Minnesota, 2001. / Includes bibliographical references (leaves 136-137). Also available on the World Wide Web as a PDF file.
6

Evaluation of wall systems subjected to lateral pressure for blast resistant design

Brown, Jeffrey Allen, January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 107-108). Also available on the Internet.
7

Behaviour and design of cold-formed steel hollow flange sections under axial compression

Zhao, Wen-Bin January 2006 (has links)
The use of cold-formed steel structures is increasing rapidly around the world due to the many advances in construction and manufacturing technologies and relevant standards. However, the structural behaviour of these thin-walled steel structures is characterised by a range of buckling modes such as local buckling, distortional buckling or flexural torsional buckling. These buckling problems generally lead to severe reduction and complicated calculations of their member strengths. Therefore it is important to eliminate or delay these buckling problems and simplify the strength calculations of cold-formed steel members. The Hollow Flange Beam with two triangular hollow flanges, developed by Palmer Tube Mills Pty Ltd in the mid-1990s, has an innovative section that can delay the above buckling problems efficiently. This structural member is considered to combine the advantages of hot-rolled I-sections and conventional cold-formed sections such as C- and Z-sections (Dempsey, 1990). However, this structural product was discontinued in 1997 due to the complicated manufacturing process and the expensive electric resistance welding method associated with severe residual stresses (Doan and Mahendran, 1996). In this thesis, new fastening methods using spot-weld, screw fastener and self-pierced rivet were considered for the triangular Hollow Flange Beams (HFBs) and the new rectangular hollow flange beams (RHFBs). The structural behaviour of these types of members in axial compression was focused in this research project. The objective of this research was to develop suitable design models for the members with triangular and rectangular hollow flanges using new fastening methods so that their behaviour and ultimate strength can be predicted accurately under axial compression. In the first stage of this research a large number of finite element analyses (FEA) was conducted to study the behaviour of the electric resistance welded, triangular HFBs (ERW-HFBs) under axial compression. Experimental results from previous researchers were used to verify the finite element model and its results. Appropriate design rules based on the current design codes were recommended. Further, a series of finite element models was developed to simulate the corresponding HFBs fastened using lap-welds (called LW-HFBs) and screw fasteners or spot-welds or self-piercing rivets (called S-HFBs). Since the test specimens of LW-HFBs and S-HFBs were unavailable, the finite element results were verified by comparison with the experimental results of ERW-HFB with reasonable agreement. In the second stage of this research, a total of 51 members with rectangular hollow flanges including the RHFBs made from a single plate and 3PRHFBs made from three plates fastened with spot-welds and screws was tested under axial compression. The finite element models based on the tests were then developed that included the new fasteners, contact simulations, geometric imperfections and residual stresses. The improved finite element models were able to simulate local buckling, yielding, global buckling and local/global buckling interaction failure associated with gap opening as agreed well with the corresponding full-scale experimental results. Extensive parametric studies for the RHFBs made from a single plate and the 3PRHFBs made from three plates were undertaken using finite element analyses. The analytical results were compared with the predictions using the current design rules based on AS 4100, AS/NZS 4600 and the new direct strength method. Appropriate design formulae based on the direct strength method for RHFBs and 3PRHFBs were developed. This thesis has thus enabled the accurate prediction of the behaviour and strength of the new compression members with hollow flanges and paved the way for economical and efficient use of these members in the industry.
8

Toward advanced analysis in steel frame design

Hwa, Ken. January 2003 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2003. / Includes bibliographical references (leaves 199-203).
9

Optimising the mechanical properties and microstructure of armoured steel plate in the quenched and tempered condition

Kasonde, Maweja. January 2005 (has links)
Thesis (M. Eng.(Metallurgical engineering))--University of Pretoria, 2005. / Includes bibliographical references. Available on the Internet via the World Wide Web.
10

Cyclic response of hollow and concrete-filled circular hollow section braces

Sheehan, Therese, Chan, T.M. January 2014 (has links)
yes / The behaviour of seismic-resistant buildings relies heavily upon the inclusion of energy dissipating devices. For concentrically-braced frames, this function is accomplished by diagonal bracing members whose performance depends upon both cross-sectional properties and global slenderness. Traditionally preferred rectangular hollow sections are susceptible to local buckling, particularly in cold-formed tubes, owing to the residual stresses from manufacture. This paper explores the response of hollow and concrete-filled circular tubes under cyclic axial loading. The uniformity of the circular cross-section provides superior structural efficiency over rectangular sections and can be further optimised by the inclusion of concrete infill. A series of experiments was conducted on filled and hollow specimens to assess the merit of the composite section. Comparisons were drawn between hot-finished and cold-formed sections to establish the influence of fabrication on member performance. Two specimen lengths were utilised to assess the influence of non-dimensional slenderness. Parameters such as ductility, energy dissipation, tensile strength and compressive resistance are presented and compared with design codes and empirically derived predictions.

Page generated in 0.1027 seconds