• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes numériques pour les écoulements souterrains et couplage avec le ruissellement

Sochala, Pierre 03 December 2008 (has links) (PDF)
Des schémas numériques précis et robustes sont proposés pour modéliser les écoulements souterrains et leur couplage avec le ruissellement surfacique. Les écoulements souterrains sont d´écrits par l'équation de Richards (instationnaire) qui est discrétisée par une méthode BDF en temps et une méthode de Galerkine discontinue à pénalisation intérieure symétrique en espace. Des cas tests sur des colonnes d'infiltration confirment la robustesse des schémas choisis. Dans un premier temps, nous considérons des conditions de Signorini pour l'équation de Richards afin de modéliser la présence de drains en fond d'aquifère ou l'affleurement de la nappe en négligeant le ruissellement, c'est-à-dire en supposant que l'eau exfiltrée est immédiatement évacuée du système. Dans un second temps, nous prenons en compte le ruissellement par le biais de conditions de couplage qui imposent l'égalité des flux d'eau échangés et la continuité de la pression à l'interface. Les écoulements superficiels sont d´écrits par l'équation de l'onde cinématique qui constitue une approximation des équations de Saint-Venant. L'équation de l'onde cinématique est discrétisée par une méthode de Godunov. Les deux schémas, pour l'écoulement souterrain et pour l'écoulement superficiel, sont conservatifs et peuvent être utilisés dans des algorithmes de couplage faisant intervenir un ou plusieurs pas de temps. Pour assurer la conservation de la masse d'eau totale du système couplé, les flux à l'interface doivent être convenablement choisis. Nous donnons en particulier la construction de ces flux pour les schémas BDF1 et BDF2. La précision et la robustesse de nos schémas sont évaluées sur plusieurs cas tests dont le drainage d'une lame d'eau, deux cas d'exfiltration de nappe (l'un provoqué par la pluie et l'autre par une injection en fond d'aquifère) et un ruissellement hortonien. Enfin, nous présentons une application concrète portant sur le fonctionnement hydrologique d'un petit bassin versant drainé.
2

Assimilation de données et identification de paramètres : une application en hydrologie

Ngnepieba, Pierre Désiré 13 December 2001 (has links) (PDF)
La détermination de certains paramètres hydrodynamiques dans les modèles d'écoulement en zone non-saturée (et plus généralement dans certains modèles géophysiques) requiert l'utilisation d'un modèle et de données d'observations. Le but de ce travail est de proposer une méthode d'assimilation variationnelle de données permettant de reconstituer ces paramètres en tenant compte des observations et le modèle. La méthode proposée est fondée sur les techniques de contrôle optimal. Le travail mené dans cette étude porte sur l'identification de paramètres sur le modèle de Richards monodimensionnel ainsi que sa mise en oeuvre numérique. Au préalable, une investigation de la physique liée à notre problématique est explorée. Les données à assimiler sont les mesures d'infiltration cumulée et le vecteur de contrôle choisi est constitué de la condition initiale, des conditions aux limites et des paramètres hydrodynamiques. C'est ainsi que suivant certaines distributions des observations (infiltration cumulée observée), le paramètre de contrôle est reconstitué. Cette phase est suivie par une étude a posteriori basée sur les études au second ordre qui permettent d'estimer l'erreur de l'identification, l'influence de la configuration temporelle des observations sur la qualité de l'identification ainsi qu'une bonne compréhension du processus de minimisation. La dérivation automatique à l'aide du logiciel de différentiation automatique ODYSSEE est utilisée pour déduire les informations du premier et du second ordre. Enfin, en se servant des études au second ordre réalisées, nous appliquons l'algorithme de Newton au système d'optimalité.
3

Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy

Loizeau, Sebastien 14 June 2013 (has links) (PDF)
Dans un champ captant, comme celui qui alimente l'agglomération lyonnaise, le fonctionnement de chaque " objet " (bassins d'infiltration, puits, rivières, nappe, zone non saturée) et leurs interactions sont complexes et mal connus. Dans un premier temps, une série d'essais d'infiltration à différentes échelles dans un bassin artificiel de réalimentation a permis de mieux appréhender le fonctionnement de cet ouvrage et de chiffrer les paramètres hydrodynamiques de la zone non saturée. Les résultats des interprétations par méthodes numériques fondées sur l'équation de Richards ont montré que les flux infiltrés dans les bassins dépendent principalement de la conductivité hydraulique à saturation d'une couche située directement sous le sable calibré couvrant le fond du bassin, identifiée comme étant moins perméable que la nappe. Cette couche conditionne l'existence d'une zone non saturée. La réalisation d'essais de pompage dans l'aquifère sur les forages d'exploitation et sur un dispositif spécialement mis en place durant ce travail a permis de déterminer les paramètres hydrodynamiques de la nappe. Une analyse des observations et une modélisation conceptuelle en 2D, puis en 3D ont permis d'identifier les mécanismes prépondérants (stratifications, apports et prélèvements) et de simuler correctement à la fois les flux infiltrés dans un des bassins d'infiltration et la remontée de la nappe. A l'échelle d'un bassin, les flux infiltrés sont variables dans le temps, ils dépendent de l'état de colmatage de la surface d'infiltration mais également de la température de l'eau infiltrée et de l'état hydrique initial du sol sous le bassin. Les analyses de sensibilité réalisées avec les modèles mis en place indiquent que la conductivité hydraulique à saturation de l'aquifère, mais également la proximité des conditions aux limites imposées dans la nappe (les rivières et les puits de pompage) influencent de manière prépondérante la remontée de la nappe. Une modélisation 3D d'un autre secteur du champ captant comprenant deux bassins d'infiltration, deux bras de rivière ainsi que des puits de pompage a été réalisée. La condition à la limite imposée sur les rivières est du troisième type en accord avec l'observation d'un sous-écoulement en nappe. Les échanges nappe/rivières sont calés sur des observations à partir d'une chronique de propagation d'une onde de crue dans la nappe. Des piézomètres en flûte de pan, spécifiquement implantés à proximité d'un bassin, ont permis d'observer des différences de charge hydraulique fortes à différents niveaux de l'aquifère lorsque le bassin d'infiltration est en eau. La modélisation 3D est conforme à ces observations. Elle a confirmé l'importance du rôle d'une hétérogénéité de type argilo-sableuse (de conductivité hydraulique à saturation inférieure aux autres lithologies présentes dans l'aquifère) dans les écoulements (direction et flux). Le modèle développé représente correctement les flux infiltrés via les bassins ainsi que les fluctuations de la piézométrie de la nappe. Il permet de vérifier l'inversion des écoulements par rapport aux infiltrations de la rivière, d'identifier les puits alimentés par les bassins d'infiltration et également de mettre en évidence les flux de nappe passant sous la rivière.
4

Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy / Improvement of the understanding of hydrodynamic functioning of the Crépieux-Charmy well field

Loizeau, Sébastien 14 June 2013 (has links)
Dans un champ captant, comme celui qui alimente l'agglomération lyonnaise, le fonctionnement de chaque « objet » (bassins d'infiltration, puits, rivières, nappe, zone non saturée) et leurs interactions sont complexes et mal connus. Dans un premier temps, une série d'essais d'infiltration à différentes échelles dans un bassin artificiel de réalimentation a permis de mieux appréhender le fonctionnement de cet ouvrage et de chiffrer les paramètres hydrodynamiques de la zone non saturée. Les résultats des interprétations par méthodes numériques fondées sur l'équation de Richards ont montré que les flux infiltrés dans les bassins dépendent principalement de la conductivité hydraulique à saturation d'une couche située directement sous le sable calibré couvrant le fond du bassin, identifiée comme étant moins perméable que la nappe. Cette couche conditionne l'existence d'une zone non saturée. La réalisation d'essais de pompage dans l'aquifère sur les forages d'exploitation et sur un dispositif spécialement mis en place durant ce travail a permis de déterminer les paramètres hydrodynamiques de la nappe. Une analyse des observations et une modélisation conceptuelle en 2D, puis en 3D ont permis d'identifier les mécanismes prépondérants (stratifications, apports et prélèvements) et de simuler correctement à la fois les flux infiltrés dans un des bassins d'infiltration et la remontée de la nappe. A l'échelle d'un bassin, les flux infiltrés sont variables dans le temps, ils dépendent de l'état de colmatage de la surface d'infiltration mais également de la température de l'eau infiltrée et de l'état hydrique initial du sol sous le bassin. Les analyses de sensibilité réalisées avec les modèles mis en place indiquent que la conductivité hydraulique à saturation de l'aquifère, mais également la proximité des conditions aux limites imposées dans la nappe (les rivières et les puits de pompage) influencent de manière prépondérante la remontée de la nappe. Une modélisation 3D d'un autre secteur du champ captant comprenant deux bassins d'infiltration, deux bras de rivière ainsi que des puits de pompage a été réalisée. La condition à la limite imposée sur les rivières est du troisième type en accord avec l'observation d'un sous-écoulement en nappe. Les échanges nappe/rivières sont calés sur des observations à partir d'une chronique de propagation d'une onde de crue dans la nappe. Des piézomètres en flûte de pan, spécifiquement implantés à proximité d'un bassin, ont permis d'observer des différences de charge hydraulique fortes à différents niveaux de l'aquifère lorsque le bassin d'infiltration est en eau. La modélisation 3D est conforme à ces observations. Elle a confirmé l'importance du rôle d'une hétérogénéité de type argilo-sableuse (de conductivité hydraulique à saturation inférieure aux autres lithologies présentes dans l'aquifère) dans les écoulements (direction et flux). Le modèle développé représente correctement les flux infiltrés via les bassins ainsi que les fluctuations de la piézométrie de la nappe. Il permet de vérifier l'inversion des écoulements par rapport aux infiltrations de la rivière, d'identifier les puits alimentés par les bassins d'infiltration et également de mettre en évidence les flux de nappe passant sous la rivière. / In a well field of the Lyon metropolitan area, designed for drinking water supply, behaviour of each object (infiltration basins, wells, rivers, aquifer, and unsaturated zone) and their interactions are complex and not well-known. As a first step, infiltration tests at different spatial scales in one artificial basin were performed to better understand the basin operation and to estimate the hydrodynamic parameters of the unsaturated zone. Results of interpretation, using numerical methods based on Richards equation, reveal that infiltrated basin fluxes mainly depend on saturated hydraulic conductivity of a layer located just below the calibrated sand layer that cover the basin bottom. Indeed this layer has been estimated to be less permeable than the aquifer, which allows the existence of the unsaturated zone below. Pumping tests in the groundwater have been performed using production wells and a well specially implemented during this thesis work in order to estimate aquifer hydrodynamic parameters. Observations analysis and a conceptual modelling, in 2D and then in 3D, lead to a better understanding of the controlling mechanisms (stratification, input and output) and to simulate both basin infiltration rates and water table rise. Considering the whole basin scale, input fluxes are transient, related to the clogging statement of the infiltration area but also to the temperature of inflow water and the initial statement of the soil just below the basin. Sensibility analyses using the models highlight that the amount of the water table rise is mainly influenced by the aquifer saturated hydraulic conductivity and also by the location of imposed boundaries in the aquifer (rivers and pumping wells). The model properly accounts basin inflow fluxes and water table fluctuations. The model is able to verify if flows are reversed in relation to river exchanges, if wells are fed by infiltration basins and it highlights aquifer flows below the river. A 3D modelling has been realised in another area of the well field, comprising two infiltration basins, two river arms and pumping wells. In agreement with underflow in the aquifer, rivers are imposed in the model as third kind boundary conditions. Aquifer and river exchanges are calibrated with observed data of one aquifer flood-wave propagation. Significant differences of hydraulic heads have been observed at different depths of the aquifer using panpipes piezometers, specifically implemented, close to one infiltration basin. Theses differences are closely related to basin operation. These observations are properly calculated by the 3D model. Using the model, the effect of one sandy-clay heterogeneous layer (whose saturated hydraulic conductivity is lower than the ones of other aquifer lithologies) on aquifer flows (direction and flux) is notable. The model properly accounts basin inflow fluxes and water table fluctuations. The model is able to verify if flows are reversed in relation to river exchanges, if wells are fed by infiltration basins and it highlights aquifer flow below the river.
5

Modélisation couplée des écoulements de surface et de sub-surface dans un bassin versant par approches numériques à dimensions euclidiennes réduites / Coupled surface-subsurface flow in a watershed by using numerical approaches with reduced Euclidean dimensions

Pan, Yi 26 October 2015 (has links)
Les interactions entre les processus de surface et de sub-surface sont des composantes clés du cycle hydrologique que les modèles hydrologiques doivent représenter pour obtenir des prédictions cohérentes et précises dans un contexte de gestion durable de la ressource en eau. Les modèles hydrologiques intégrés qui décrivent de façon physique les processus et leurs interactions sont de conception récente. La plupart de ces modèles s‘appuient sur l’équation de Richards 3D pour décrire les processus d’écoulement souterrain. Cette approche peut être problématique compte tenu de contraintes importantes sur le maillage et sur la résolution numérique. Ce travail de thèse propose un modèle hydrologique intégré qui s’appuie sur approche innovante à dimension réduite pour simplifier les écoulements de surface et souterrains d'un bassin versant. Les différents compartiments du modèle sont d’abord testés indépendamment puis couplés. Les résultats montrent que l’approche proposée décrit précisément les processus hydrologiques considérés tout en améliorant de façon significative l’efficacité générale du modèle. / Interactions between surface and subsurface flow processes are key components of the hydrological water cycle. Accounting for these interactions in hydrological modelsis mandatory to provide relevant and accurate predictions for water quality and water resources management. Fully-integrated hydrological models that describe with aphysical meaning the hydrological processes and their interactions are recent. Most of these models rely upon the resolution of a 3D Richards equation to describe subsurface flow processes. This approach may become intractable because of the heavy constrains on both meshing and numerical resolution. This PhD proposes a new integrated hydrological model on the idea of dealing with dimensionally reduced flow in both the surface and sub-surface compartments of a watershed. The different compartments of the model are first tested independently and then coupled. The results show that the proposed approach allows for a proper and precise depiction ofthe hydrological processes enclosed in the model while providing significant gain incomputational efficiency.
6

Modélisation des processus biogéochimiques dans les sédiments variablement saturés soumis au forçage de la marée / Modelling of biogeochemical processes into variably saturated sédiments submitted to the tidal forcing

Chassagne, Romain 08 October 2010 (has links)
Afin de mieux appréhender la multiplicité et la complexité des processus biogéochimiques enzône cotière, un modèle 2D dé- crivant l’évolution d’espèces biogéniques dans les sédiments per-méables des zones intertidales a été développé. Ce modèle couple l’hydrodynamique générée parla marée aux processus de transport-réaction d’espèces biogéochimiques. L’infiltration de la maréedans ce milieu poreux variablement saturé est modélisée par l’équation de Richards. Des méthodesnumériques nécessaires à la ré- solution des équations décrivant le couplage ont été mises en place,comme la méthode de stabilisation SUPG (Streamline Upwind Petrov Galerkin) et une méthodede capture de choc. Le site très dynamique de la plage du Truc-Vert (côte Atlantique) a été choisicomme terrain de référence en raison principalement d’études biogéochimiques disponibles. Lesparamètres d’entrée du modèle font appel d’une part à ces données de terrain (missions ANR PRO-TIDAL et MOBISEA) et d’autre part à des paramètres issus de la bibliographie. La validation dumodèle a été effectuée à partir de la comparaison avec deux cas test issus de la littérature, le pre-mier concernant l’hydrodynamique sous le forçage de la marée et le second concernant l’équationde transport-réaction. Une première version du modèle a été déclinée pour décrire l’évolution de laconcentration en silice en milieu poreux sous le forçage de la marée. Les flux de silice vers l’océanet le temps de résidence de la silice dans les sédiments perméables des plages ont été estimés. Aubout de quelques jours, on peut observer la formation d’une lentille de faible concentration en si-lice dans la partie supérieure de la zone intertidale, caractéristique du forçage de la marée. Nousavons également étudié les variations de la géométrie de cette lentille et du temps de résidencesous l’influence de différents paramètres, tel que la pente de la plage, la conductivité hydraulique,l’amplitude de la marée et le coefficient de dispersion. Une deuxième version du modèle décrit la dégradation de la matière organique, l’évolution des concentrations en oxygène, en nitrates,en phosphates. Ainsi nous disposons de la répartition spatio-temporelle des concentra- tions deces différentes espèces chimiques dans le sédiment. Aujourd’hui les problèmes environnementauxs’avèrent fondamentaux pour notre société et la compréhension des interactions sédiments-océanen est une étape essentielle. Ce modèle nous permet de mieux percevoir le rôle joué par la ma-rée et de quantifier les processus qu’elle induit dans les sédiments variablement saturés des plagessableuses. Ce modèle participe de façon significative à la compréhension des processus biogéochi-miques se déroulant dans ces environnements particulièrement complexes et permet la structurationdes campagnes de mesure. / For a better understanding of the complexity of the biogeochemical processes in coastal re-gion, a 2D model has been developed. This model couples hydrodynamic forcing generated bythe tide and the transport-reaction processes of biogeochemical species. Di- scharge of the tideinto the variably-saturated porous media is modelled by Richards equation. Some numerical me-thods are required for solving this kind of complex problem, as Streamline Upwind Petrov Galerkin(SUPG) method and shock capturing method. The highly dynamical site of the Truc-Vert beach hasbeen chosen as reference field, mainly because of avalaible biogeochemical and hydrodynamicalstudies. The input parameters of the model come from these field data (ANR PROTIDAL and MO-BISEA projects) and from the bibliography. The validation of the model was made in regards oftwo case studies from published hydrodynamic simu- lations under tidal forcing and from avaliabletransport-reaction solutions. A first version of the model has been declined to describe silicic acidevolution into porous media under tidal forcing. The flux of the silicic acid to the ocean and theresidence time of silicic acid into permeable sandy sediments were estimated. After some days, weobserve the formation of a lens of low silicic acid concen- tration in the upper part of the intertidalzone. This lens is the main imprint of the tidal forcing. We studied also variations of the lens geo-metry and the residence time under influence of model parameters, such as the beach slope, the tideamplitude and the dispersion coefficient. A second version of the model describes the organic mat-ter degradation , and simulates the concentrations of oxygen, nitrates and phosphates. The modelreproduces the spatial (2D) and temporal distribution of the concentration of these different che-mical species into the sediment. Nowadays environmental problems are fondamental for our societyand the understanding of the sediment-ocean interactions is a crucial step. The new model allowsus a better understanding of the tidal impact on biogeochemical processes in permeable sediments and offers a quantitative approach on biogeochemical processes that occur into variably-saturatedsandy sediments. The model also offers a useful tool to optimize sampling strategy for field studies.
7

Ecoulements oscillatoires et effets capillaires en milieux poreux partiellement saturés et non saturés : applications en hydrodynamique côtière / Oscillatory flows and capillary effects in partially saturated and unsaturated porous media : applications to beach hydrodynamics

Alastal, Khalil 16 May 2012 (has links)
Dans cette thèse, on étudie les écoulements oscillatoires en milieux poreux (non saturés ou partiellement saturés) dus à des oscillations tidales des niveaux d'eau dans des milieux ouverts adjacents aux milieux poreux. L'étude est centrée sur le cas des plages de sable en hydrodynamique côtière, mais les applications concernent, potentiellement et plus généralement, les problèmes d'oscillation et de variation temporelle des niveaux d'eau dans des systèmes couplés, lorsque ceux-ci mettent en jeu des interactions entre les écoulements de sub-surface (milieux poreux) et les eaux de surface (milieux ouverts) : plages naturelles et artificielles; digues portuaires; barrages en terre; berges de fleuves; estuaires. Le forçage tidal des écoulements souterrains est représenté et modélisé ici, tant expérimentalement que numériquement, par une oscillation quasi-statique du niveau d'eau dans un réservoir externe ouvert, connecté au domaine poreux. On s'intéresse plus particulièrement aux écoulements verticaux forcés par une pression oscillatoire imposée au bas d'une colonne de sol. Sur le plan expérimental, ce type de forçage est obtenu par une machine à marée équipée d'un arbre rotatif. Au total, on utilise dans ce travail trois types d'approches (expérimentale, numérique, analytique), l'objectif étant d'étudier le mouvement vertical de la surface "libre" et l'écoulement non saturé sus-jacent, de façon à prendre en compte aussi bien les pertes de charge dans la zone saturée que les gradients de pression capillaire dans la zone non saturée. […] / In this thesis, we study hydrodynamic oscillations in porous bodies (unsaturated or partially saturated), due to tidal oscillations of water levels in adjacent open water bodies. The focus is on beach hydrodynamics, but potential applications concern, more generally, time varying and oscillating water levels in coupled systems involving subsurface / open water interactions (natural and artificial beaches, harbor dykes, earth dams, river banks, estuaries). The tidal forcing of groundwater is represented and modeled (both experimentally and numerically) by quasi-static oscillations of water levels in an open water reservoir connected to the porous medium. Specifically, we focus on vertical water movements forced by an oscillating pressure imposed at the bottom of a soil column. Experimentally, a rotating tide machine is used to achieve this forcing. Overall, we use three types of methods (experimental, numerical, analytical) to study the vertical motion of the groundwater table and the unsaturated flow above it, taking into account the vertical head drop in the saturated zone as well as capillary pressure gradients in the unsaturated zone. Laboratory experiments are conducted on vertical sand columns, with a tide machine to force water table oscillations, and with porous cup tensiometers to measure both positive pressures and suctions along the column (among other measurement methods). Numerical simulations of oscillatory water flow are implemented with the BIGFLOW 3D code (implicit finite volumes, with conjugate gradients for the matrix solver and modified Picard iterations for the nonlinear problem). In addition, an automatic calibration based on a genetic optimization algorithm is implemented for a given tidal frequency, to obtain the hydrodynamic parameters of the experimental soil. Calibrated simulations are then compared to experimental results for other non calibrated frequencies. Finally, a family of quasi-analytical multi-front solutions is developed for the tidal oscillation problem, as an extension of the Green-Ampt piston flow approximation, leading to nonlinear, non-autonomous systems of Ordinary Differential Equations with initial conditions (dynamical systems). The multi-front solutions are tested by comparing them with a refined finite volume solution of the Richards equation. Multi-front solutions are at least 100 times faster, and the match is quite good even for a loamy soil with strong capillary effects (the number of fronts required is small, no more than N≈ to 20 at most). A large set of multi-front simulations is then produced in order to analyze water table and flux fluctuations for a broad range of forcing frequencies. The results, analyzed in terms of means and amplitudes of hydrodynamic variables, indicate the existence, for each soil, of a characteristic frequency separating low frequency / high frequency flow regimes in the porous system.
8

Méthodes numériques pour les écoulements et le transport en milieu poreux / Numerical methods for flow and transport in porous media

Vu Do, Huy Cuong 25 November 2014 (has links)
Cette thèse porte sur la modélisation de l’écoulement et du transport en milieu poreux ;nous effectuons des simulations numériques et démontrons des résultats de convergence d’algorithmes.Au Chapitre 1, nous appliquons des méthodes de volumes finis pour la simulation d’écoulements à densité variable en milieu poreux ; il vient à résoudre une équation de convection diffusion parabolique pour la concentration couplée à une équation elliptique en pression.Nous nous appuyons sur la méthode des volumes finis standard pour le calcul des solutions de deux problèmes spécifiques : une interface en rotation entre eau salée et eau douce et le problème de Henry. Nous appliquons ensuite la méthode de volumes finis généralisés SUSHI pour la simulation des mêmes problèmes ainsi que celle d’un problème de bassin salé en dimension trois d’espace. Nous nous appuyons sur des maillages adaptatifs, basés sur des éléments de volume carrés ou cubiques.Au Chapitre 2, nous nous appuyons de nouveau sur la méthode de volumes finis généralisés SUSHI pour la discrétisation de l’équation de Richards, une équation elliptique parabolique pour le calcul d’écoulements en milieu poreux. Le terme de diffusion peut être anisotrope et hétérogène. Cette classe de méthodes localement conservatrices s’applique àune grande variété de mailles polyédriques non structurées qui peuvent ne pas se raccorder.La discrétisation en temps est totalement implicite. Nous obtenons un résultat de convergence basé sur des estimations a priori et sur l’application du théorème de compacité de Fréchet-Kolmogorov. Nous présentons aussi des tests numériques.Au Chapitre 3, nous discrétisons le problème de Signorini par un schéma de type gradient,qui s’écrit à l’aide d’une formulation variationnelle discrète et est basé sur des approximations indépendantes des fonctions et des gradients. On montre l’existence et l’unicité de la solution discrète ainsi que sa convergence vers la solution faible du problème continu. Nous présentons ensuite un schéma numérique basé sur la méthode SUSHI.Au Chapitre 4, nous appliquons un schéma semi-implicite en temps combiné avec la méthode SUSHI pour la résolution numérique d’un problème d’écoulements à densité variable ;il s’agit de résoudre des équations paraboliques de convection-diffusion pour la densité de soluté et le transport de la température ainsi que pour la pression. Nous simulons l’avance d’un front d’eau douce assez chaude et le transport de chaleur dans un aquifère captif qui est initialement chargé d’eau froide salée. Nous utilisons des maillages adaptatifs, basés sur des éléments de volume carrés. / This thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We apply the standard finite volume method to compute the solutions of a problem involving a rotating interface between salt and fresh water and of Henry's problem. We then apply the SUSHI scheme to the same problems as well as to a three dimensional saltpool problem. We use adaptive meshes, based upon square volume elements in space dimension two and cubic volume elements in space dimension three. In Chapter 2, we apply the generalized finite volume method SUSHI to the discretization of Richards equation, an elliptic-parabolic equation modeling groundwater flow, where the diffusion term can be anisotropic and heterogeneous. This class of locally conservative methods can be applied to a wide range of unstructured possibly non-matching polyhedral meshes in arbitrary space dimension. As is needed for Richards equation, the time discretization is fully implicit. We obtain a convergence result based upon a priori estimates and the application of the Fréchet-Kolmogorov compactness theorem. We implement the scheme and present numerical tests. In Chapter 3, we study a gradient scheme for the Signorini problem. Gradient schemes are nonconforming methods written in discrete variational formulation which are based on independent approximations of the functions and the gradients. We prove the existence and uniqueness of the discrete solution as well as its convergence to the weak solution of the Signorini problem. Finally we introduce a numerical scheme based upon the SUSHI discretization and present numerical results. In Chapter 4, we apply a semi-implicit scheme in time together with a generalized finite volume method for the numerical solution of density driven flows in porous media; it comes to solve nonlinear convection-diffusion parabolic equations for the solute and temperature transport as well as for the pressure. We compute the solutions for a specific problem which describes the advance of a warm fresh water front coupled to heat transfer in a confined aquifer which is initially charged with cold salt water. We use adaptive meshes, based upon square volume elements in space dimension two.
9

Etude expérimentale et numérique des oscillations hydrodynamiques en milieux poreux partiellement saturés / Experimental and numerical study of hydrodynamic oscillations in partially saturated porous media

Wang, Yunli 16 September 2010 (has links)
Cette thèse vise à étudier expérimentalement, analytiquement et numériquement, les conséquences de variations et d'oscillations hydrodynamiques à forte variabilité temporelle en milieux poreux partiellement saturés. Les problèmes que nous étudions comportent des surfaces libres tant à l'extérieur qu'à l'intérieur des milieux poreux, celles-ci étant définies comme des isosurfaces de pression d'eau égale à la pression atmosphérique (Pwater = Patm). Les différentes études expérimentales réalisées en laboratoire sont, respectivement : une expérience d'imbibition dans une boite à sable avec effets capillaires importants; la transmission d'oscillations de la surface libre à travers un massif sableux intercalaire dans un petit canal à houle (IMFT, Toulouse); l'étude de la dynamique et de la propagation des oscillations des niveaux d'eau dans un grand canal à houle (HYDRALAB, Barcelone), partiellement recouvert d'un fond sableux incliné, avec mesures de niveaux d'eau en pleine eau et sous le sable, et mesures du fond sableux (érosion/dépôts). Pour les études théoriques, nous avons développés des solutions analytiques linéarisées. Un exemple de problème traité analytiquement est: l'équation linéarisée de Dupuit-Boussinesq (D-B) transitoire à surface libre, en hypothèse d'écoulements plans et vidange/remplissage instantané : oscillations forcées, transmission et dissipation d'ondes à travers une boite à sable rectangulaire. Nous avons aussi développé une solution de l'équation faiblement non linéaire de Dupuit- Boussinesq (D-B) pour étudier le problème d'imbibition avec variation abrupte du niveau d'eau amont (suivi temporel du front de saturation). Nous avons pu étudier les différents types de problèmes transitoires liés aux expériences citées plus haut par simulation numérique. En particulier, nous avons simulé des écoulements partiellement saturés et insaturés, en coupe verticale, à l'aide d'un code de calcul (BIGFLOW 3D) qui résoud l'équation de Richards généralisée en régime transitoire. Nous avons ainsi étudié numériquement en régime non saturé, l'expérience d'imbibition dans un sable initialement sec à frontières verticales (IMFT sandbox), puis l'expérience de propagation d'ondes dans le grand canal à houle de Barcelone (laboratoire HYDRALAB) comportant une plage de sable inclinée, avec un couplage complètement intégré entre les zones micro-poreuse (sable) et “macro-poreuse” (pleine eau). Pour analyser les résultats de cette dernière expérience et les comparer aux simulations, nous avons utilisé plusieurs méthodes de traitement et d'analyse des signaux : analyse de Fourier (spectres de fréquences) ; ondelettes discrètes multi-résolution (Daubechies) ; analyses corrélatoires simple et croisée. Ces méthodes sont combinées avec des méthodes de préfiltrage pour estimer dérives et résidus (moyennes mobiles ; ondelettes multi-résolution). Cette analyse des signaux a permis de comprendre et quantifier la propagation à travers une plage de sable. Au total, les différentes approches de modélisation mis en oeuvre, associé à des procédures de calage en situation de couplage transitoire non linéaire ont permis de reproduire globalement les phénomènes de propagation de teneur en eau et de niveau d'eau dans les différentes configurations étudiées. / This thesis aims at investigating experimentally, analytically and numerically, the consequences of hydrodynamic variations and oscillations with high temporal variability in partially saturated porous media. The problems investigated in this work involve “free surfaces” both outside and inside the porous media, the free surface being defined as the “atmospheric” water pressure isosurface (Pwater = Patm). The laboratory experiments studied in this work are, respectively: Lateral imbibition in a dry sand box with significant capillary effects; Transmission of oscillations of the free surface through a vertical sand box placed in a small wave canal (IMFT, Toulouse); Dynamics of free surface oscillations and wave propagation in a large wave canal (HYDRALAB, Barcelona), partially covered with sand, with measurements of both open water and groundwater levels, and of sand topography (erosion / deposition). For theoretical studies, we have developed linearized analytical solutions. Here is a sample problem that was treated analytically in this work: The linearized equation of Dupuit-Boussinesq (DB) for transient free surface flow, assuming horizontal flow and instantaneous wetting/drainage of the unsaturated zone: forced oscillations, wave transmission and dissipation through a rectangular sandbox. We also developed a weakly nonlinear solution of the Dupuit-Boussinesq equation to study the sudden imbibition (temporal monitoring of the wetting front). We have studied the different types of transient flow problems related to the experiments cited above by numerical simulation. In particular, we have simulated unsaturated or partially saturated transient flows in vertical cross-section, using a computer code (BIGFLOW 3D) which solves a generalized version of Richards’ equation. Thus, using the Richards / BIGFLOW 3D model, we have studied numerically the experiment of unsaturated imbibition in a dry sand (IMFT sandbox), and then, with the same model, we have also studied the partially saturated wave propagation experiment in the large Barcelona wave canal (HYDRALAB laboratory), focusing on the sloping sandy beach, with coupling between the micro-porous zone (sand) and the “macro-porous” zone (open water). To interpret the results of the latter experiment and compare them to simulations, we use several methods of signal analyzis and signal processing, such as: Fourier analysis, discrete multi-resolution wavelets (Daubechies), auto and cross-correlation functions. These methods are combined with pre-filtering methods to estimate trends and residuals (moving averages; discrete wavelet analyses). This signal analyzis has allowed us to interpret and quantify water propagation phenomena through a sandy beach. To sum up, different modeling approaches, combined with model calibration procedures, were applied to transient nonlinear coupled flow problems. These approaches have allowed us to reproduce globally the water content distributions and water level propagation in the different configurations studied in this work.

Page generated in 0.4972 seconds