• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 2
  • 1
  • Tagged with
  • 71
  • 71
  • 66
  • 64
  • 31
  • 30
  • 23
  • 15
  • 15
  • 13
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Modelagem autom?tica e din?mica de estilos de aprendizagem em sistemas adaptativos e inteligentes para educa??o a dist?ncia: estudo comparativo entre duas abordagens

Gon?alves, Andr? Vin?cius 18 December 2015 (has links)
Submitted by Jos? Henrique Henrique (jose.neves@ufvjm.edu.br) on 2017-01-09T12:21:59Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) andre_vinicius_gon?alves.pdf: 1266538 bytes, checksum: 42c3fe90b9d66c8cb7b901a10e548f1b (MD5) / Approved for entry into archive by Rodrigo Martins Cruz (rodrigo.cruz@ufvjm.edu.br) on 2017-01-31T13:56:36Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) andre_vinicius_gon?alves.pdf: 1266538 bytes, checksum: 42c3fe90b9d66c8cb7b901a10e548f1b (MD5) / Made available in DSpace on 2017-01-31T13:56:36Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) andre_vinicius_gon?alves.pdf: 1266538 bytes, checksum: 42c3fe90b9d66c8cb7b901a10e548f1b (MD5) Previous issue date: 2016-06 / Nos ?ltimos dez anos muitos pesquisadores t?m realizado estudos sobre assist?ncia personalizada e inteligente em Ambientes Educacionais a Dist?ncia, baseada na identifica??o dos Estilos de Aprendizagem. Sabe-se que o aprendizado ? algo extremamente particular, pois cada estudante possui estilos pr?prios e pode sofrer mudan?as diante de situa??es diversas como, por exemplo, objetivo, motiva??o, personalidade, etc. Por isso, o conceito de adaptabilidade do conte?do did?tico tem se tornado de grande import?ncia na personaliza??o do Sistema de Gerenciamento de Aprendizagem (SGA). Diante desse fato, Dor?a (2012) prop?e uma abordagem de Sistema Adaptativo e Inteligente para Educa??o (SAIE), utilizando t?cnicas probabil?sticas e Intelig?ncia Artificial (IA), capaz de detectar e adaptar, de maneira din?mica e autom?tica, os estilos de aprendizagem do estudante, considerando o Modelo de Estilo de Aprendizagem Felder-Silverman?s. Ap?s pesquisa detalhada, foram propostas algumas adapta??es baseadas na abordagem original, alterando o funcionamento de dois componentes espec?ficos: o M?dulo Pedag?gico e o Componente de Modelagem do Estudante. Al?m disso, prop?e-se uma nova estrutura do Modelo Estudante, contemplando o hist?rico de desempenho do aluno nos processos avaliativos. Por conseguinte, realizaram-se testes para avaliar os impactos de tais mudan?as por meio uma compara??o estat?stica utilizando o m?todo T-Pareado. Pelos resultados obtidos, as ideias deste trabalho proporcionaram uma melhora m?dia de 6,07% no desempenho avaliativo do estudante e uma redu??o m?dia de 68,27% nos problemas de aprendizagem, demonstrando efici?ncia e efic?cia da proposta. / Disserta??o (Mestrado Profissional) ? Programa de P?s-Gradua??o em Educa??o, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 2015. / Since last decade many researchers have been conducting studies on personalized and intelligent assistance in distance education based on identification of learning styles. It is known that learning is something very particular because each student has their own styles and are subject to change on a variety of situations such as goal, motivation, personality, etc. Therefore, this study discusses the concept of adaptability of educational content as a way to provide customization of Learning Management System (LMS). Through probabilistic techniques and Artificial Intelligence (AI), Dor?a (2012) proposed a approach Adaptive and Intelligent System for Education (AIES) able to dynamically and automatically detect, select and adapt learning objects based on the student?s profile through Felder-Silverman Learning Styles Model (FSLSM). After detailed study, it has been proposed some adaptations based on this approach, thereby altering the operation of two specific components: the Pedagogical Module and the Student Modeling Component. In addition, it is proposed a new structure Model Student, considering learner performance history in the evaluation processes. Therefore, it carried out tests to assess the impacts of such changes through a statistical comparison by T-Paired method. From the results, the ideas in this work provides an average improvement of 6.07% in the performance evaluation of the student and an average reduction of 68.27% in the learning problems, demonstrating proposal of efficiency and effectiveness.

Page generated in 0.0705 seconds