• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation numérique d'écoulements gravitaires à fortes différences de densité. Application aux avalanches

Etienne, Jocelyn 27 September 2004 (has links) (PDF)
Les écoulements de mélanges de deux fluides incompressibles, miscibles et ayant des densités très différentes sont gouvernés par les équations de Navier-Stokes non-homogène, couplées à une équation de convection-diffusion décrivant l'évolution de la composition du mélange. Nous proposons un algorithme associant la méthode des caractéristiques, pour la discrétisation des termes de transport, à la méthode des éléments finis avec une adaptation automatique de maillage, et démontrons que la solution de cet algorithme converge vers la solution exacte lorsque les pas de discrétisation tendent vers zéro. La robustesse de cet algorithme permet d'obtenir les premiers résultats de simulations numériques directes d'écoulements d'échange à très forte différence de densité, et de les valider par comparaison avec des expériences. Des écoulements de nuages denses sur des pentes sont simulés, et permettent d'analyser l'influence de la différence de densité sur les écoulements d'avalanches.
2

Méthodes d'éléments finis pour le problème de Darcy couplé avec l'équation de la chaleur / Finite element methods for Darcy's problem coupled with the heat equation

Dib, Serena 29 June 2017 (has links)
Dans cette thèse, nous étudions l'équation de la chaleur couplée avec la loi de Darcy à travers de la viscosité non-linéaire qui dépend de la température pour les dimensions d=2,3 (Hooman et Gurgenci ou Rashad). Nous analysons ce problème en introduisant la formulation variationnelle équivalente et en la réduisant à une simple équation de diffusion-convection pour la température où la vitesse dépend implicitement de la température.Nous démontrons l'existence de la solution sans la restriction sur les données par la méthode de Galerkin et du point fixe de Brouwer. L'unicité globale est établie une fois la solution est légèrement régulière et les données se restreignent convenablement. Nous introduisons aussi une formulation variationnelle alternative équivalente. Toutes les deux formulations variationnelles sont discrétisées par quatre schémas d'éléments finis pour un domaine polygonal ou polyédrique. Nous dérivons l'existence, l'unicité conditionnée, la convergence et l'estimation d'erreur a priori optimale pour les solutions des trois schémas. Par la suite, ces schémas sont linéarisés par des algorithmes d'approximation successifs et convergentes. Nous présentons quelques expériences numériques pour un problème modèle qui confirme les résultats théoriques de convergence développées dans ce travail. L'estimation d'erreur a posteriori est établie avec deux types d'indicateurs d'erreur de linéarisation et de discrétisation. Enfin, nous montrons des résultats numériques de validation. / In this thesis, we study the heat equation coupled with Darcy's law by a nonlinear viscosity depending on the temperature in dimension d=2,3 (Hooman and Gurgenci or Rashad). We analyse this problem by setting it in an equivalent variational formulation and reducing it to an diffusion-convection equation for the temperature where the velocity depends implicitly on the temperature.Existence of a solution is derived without restriction on the data by Galerkin's method and Brouwer's Fixed Point. Global uniqueness is established when the solution is slightly smoother and the dataare suitably restricted. We also introduce an alternative equivalent variational formulation. Both variational formulations are discretized by four finite element schemes in a polygonal or polyhedral domain. We derive existence, conditional uniqueness, convergence, and optimal a priori error estimates for the solutions of the three schemes. Next, these schemes are linearized by suitable convergent successive approximation algorithms. We present some numerical experiments for a model problem that confirm the theoretical rates of convergence developed in this work. A posteriori error estimates are established with two types of errors indicators related to the linearisation and discretization. Finally, we show numerical results of validation.

Page generated in 0.126 seconds