Spelling suggestions: "subject:"estrogen 1receptor modulators"" "subject:"estrogen 1receptor nodulators""
1 |
Mammographic breast density and postmenopausal hormone therapy /Lundström, Eva, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
|
2 |
Modulation of vascular reactivity by selective estrogen receptor modulators and dihydropyridines in porcine coronary arteries.January 2005 (has links)
Leung Hok Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 128-147). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgements --- p.ii / Abbreviation --- p.iii / Abstract in English --- p.iv / Abstract in Chinese --- p.vi / Contents --- p.viii / Chapter Chapter I - --- Introduction / Chapter 1.1. --- Steroid Hormone --- p.1 / Chapter 1.2. --- Estrogen Receptors --- p.2 / Chapter 1.3. --- Selective Estrogen Receptor Modulators --- p.5 / Chapter 1.3.1. --- Tamoxifen --- p.5 / Chapter 1.3.1.1. --- Cardiovascular Effects of Tamoxifen --- p.6 / Chapter 1.3.1.2. --- Acute Vascular Effects of Tamoxifen --- p.6 / Chapter 1.3.1.3. --- Chronic Vascular Effects of Tamoxifen --- p.7 / Chapter 1.3.1.4. --- Antioxidant Effects of Tamoxifen --- p.8 / Chapter 1.3.2. --- Raloxifene --- p.8 / Chapter 1.3.2.1. --- Cardiovascular Effects of Raloxifene --- p.8 / Chapter 1.3.2.2. --- Acute Vascular Effects of Raloxifene --- p.9 / Chapter 1.3.2.3. --- Chronic Vascular Effects of Raloxifene --- p.10 / Chapter 1.3.2.4. --- Ovariectomy and Raloxifene Treatment --- p.11 / Chapter 1.4. --- Mechanism of Action of SERMs --- p.15 / Chapter 1.5. --- Effects of Functional Endothelium and Nitric Oxide --- p.18 / Chapter 1.6. --- Dihydropyridine (DHP) Calcium Channel Antagonists --- p.19 / Chapter 1.6.1. --- Development of Newer Generation of Dihydropyridines --- p.19 / Chapter 1.6.2. --- Effects of Dihydropyridines on Vascular Endothelium (I) --- p.20 / Chapter 1.6.3. --- Effects of Dihydropyridines on Vascular Endothelium (II) --- p.21 / Chapter 1.6.4. --- Effects of Dihydropyridines on Nitric Oxide Synthase (NOS) --- p.21 / Chapter 1.6.5. --- Clinical Studies of Dihydropyridines --- p.22 / Chapter 1.7. --- Vascular Ion Channels --- p.25 / Chapter 1.8. --- Objectives of The Present Study --- p.26 / Chapter Chapter II - --- Materials and Methods / Chapter 2.1. --- Tissue Preparation --- p.27 / Chapter 2.1.1. --- Preparation of The Porcine Left Circumflex Coronary Arteries --- p.27 / Chapter 2.1.2. --- Removal of Functional Endothelium --- p.27 / Chapter 2.1.3. --- Organ Bath Setup --- p.27 / Chapter 2.1.4. --- Isometric Force Measurement --- p.29 / Chapter 2.2. --- In situ Endothelial [Ca2+]i Imaging --- p.29 / Chapter 2.2.1. --- Preparation of Porcine Left Circumflex Coronary Arteries --- p.29 / Chapter 2.2.2. --- Setup For In situ Endothelial [Ca2+]i Imaging --- p.30 / Chapter 2.3. --- Electrophysiological Measurement of BKCa Current --- p.31 / Chapter 2.3.1. --- Enzymatic Dissociation of Coronary Artery Smooth Muscle Cells --- p.31 / Chapter 2.3.2. --- Electrophysiological Measurement --- p.31 / Chapter 2.4. --- DPPH Free Radical Scavenging Assay --- p.31 / Chapter 2.5. --- Solutions and Drugs --- p.32 / Chapter 2.5.1. --- "Drugs, Chemicals and Enzymes" --- p.32 / Chapter 2.5.2. --- Solutions Used in Force Measurement --- p.34 / Chapter 2.6. --- Statistical Analysis --- p.34 / Chapter Chapter III - --- Tamoxifen-Induced Endothelial Nitric Oxide-Dependent Relaxation in Porcine Coronary Arteries via Ouabain- and BaCl2-Sensitive Mechanisms / Chapter 3.1. --- Abstract --- p.35 / Chapter 3.2. --- Introduction --- p.36 / Chapter 3.3. --- Methods and Materials --- p.37 / Chapter 3.3.1. --- Vessel Preparation --- p.37 / Chapter 3.3.2. --- Isometric Force Measurement --- p.38 / Chapter 3.3.3. --- In situ Endothelial [Ca2+]i Imaging --- p.39 / Chapter 3.3.4. --- Chemicals --- p.40 / Chapter 3.3.5. --- Data Analysis --- p.40 / Chapter 3.4. --- Results --- p.41 / Chapter 3.4.1. --- Relaxant Responses --- p.41 / Chapter 3.4.2. --- Effects of Inhibitors of NO-Dependent Relaxation --- p.41 / Chapter 3.4.3. --- Effects of Putative K+ Channel Blockers and Ouabain --- p.41 / Chapter 3.4.4. --- "Effects of Ouabain, Removal of Extracellular K+ Ions and BaCI2" --- p.42 / Chapter 3.4.5. --- SNP-Induced Relaxation --- p.42 / Chapter 3.4.6. --- Effects of Actinomycin D and Cycloheximide --- p.42 / Chapter 3.4.7. --- Relaxant Effect of 17β-Estradiol --- p.43 / Chapter 3.4.8. --- Effects on Endothelial [Ca2+]i in Isolated Coronary Arteries With Endothelium --- p.43 / Chapter 3.5. --- Discussion --- p.53 / Chapter Chapter IV - --- Endothelium-Independent Relaxation to Raloxifene in Porcine Coronary Arteries / Chapter 4.1. --- Abstract --- p.57 / Chapter 4.2. --- Introduction --- p.58 / Chapter 4.3. --- Methods and Materials --- p.59 / Chapter 4.3.1. --- Vessel Preparation --- p.59 / Chapter 4.3.2. --- Isometric Force Measurement --- p.60 / Chapter 4.3.3. --- Electrophysiological Measurement of BKCa Current --- p.61 / Chapter 4.3.3.1. --- Enzymatic Dissociation of Coronary Artery Smooth Muscle --- p.61 / Chapter 4.3.3.2. --- Electrophysiological Measurement --- p.62 / Chapter 4.3.4. --- Chemicals --- p.63 / Chapter 4.3.5. --- Data Analysis --- p.63 / Chapter 4.4. --- Results --- p.64 / Chapter 4.4.1. --- Effect of Raloxifene on Agonist-Induced Contractions --- p.64 / Chapter 4.4.2. --- Role of Endothelium --- p.64 / Chapter 4.4.3. --- Effect of ER Antagonist --- p.65 / Chapter 4.4.4. --- Effect of Putative K+ Channel Blockers --- p.65 / Chapter 4.4.5. --- Effect of Elevated Extracellular K+ Concentrations --- p.65 / Chapter 4.4.6. --- Effects of Raloxifene on BKCa Current --- p.65 / Chapter 4.5. --- Discussion --- p.75 / Chapter Chapter V - --- Therapeutic Concentrations of Raloxifene Augment Bradykinin Mediated Nitric Oxide-Dependent Relaxation in Porcine Coronary Arteries / Chapter 5.1. --- Abstract --- p.78 / Chapter 5.2. --- Introduction --- p.79 / Chapter 5.3. --- Methods and Materials --- p.80 / Chapter 5.3.1. --- Vessel Preparation --- p.80 / Chapter 5.3.2. --- Isometric Force Measurement --- p.80 / Chapter 5.3.3. --- In situ Endothelial [Ca2+]i Imaging --- p.81 / Chapter 5.3.4. --- Free Radical Scavenging Assay --- p.82 / Chapter 5.3.5. --- Chemicals --- p.83 / Chapter 5.3.6. --- Data Analysis --- p.83 / Chapter 5.4. --- Results --- p.84 / Chapter 5.4.1. --- Relaxation to Bradykinin --- p.84 / Chapter 5.4.2. --- Effect of Raloxifene on Bradykinin-Induced Relaxation --- p.84 / Chapter 5.4.3. --- Effect of Raloxifene on Relaxation Induced by Substance P and --- p.85 / Chapter 5.4.4. --- Effect of Estrogen on Bradykinin-Induced Relaxation --- p.85 / Chapter 5.4.5. --- Effect of Raloxifene on Sodium Nitroprusside-Induced Relaxation --- p.86 / Chapter 5.4.6. --- Free Radical Scavenging Effect --- p.86 / Chapter 5.4.7. --- Raloxifene Augmentation of Bradykinin-Stimulated Endothelial [Ca2+]i --- p.86 / Chapter 5.5. --- Discussion --- p.99 / Chapter Chapter VI - --- "Cilnidipine, a Slow-Acting Ca2+ Channel Blocker, Induces Relaxation in Porcine Coronary Arteries: Role of Endothelial Nitric Oxide and [Ca2+]i" / Chapter 6.1. --- Abstract --- p.102 / Chapter 6.2. --- Introduction --- p.103 / Chapter 6.3. --- Methods and Materials --- p.104 / Chapter 6.3.1. --- Vessel Preparation --- p.104 / Chapter 6.3.2. --- Isometric Force Measurement --- p.105 / Chapter 6.3.3. --- In situ Endothelial [Ca2+]i Imaging --- p.106 / Chapter 6.3.4. --- Free Radical Scavenging Assay --- p.107 / Chapter 6.3.5. --- Chemicals --- p.108 / Chapter 6.3.6 --- Data Analysis --- p.108 / Chapter 6.4. --- Results --- p.108 / Chapter 6.4.1. --- Relaxant Responses --- p.108 / Chapter 6.4.2. --- Role of the Endothelium --- p.109 / Chapter 6.4.3. --- Effect of Inhibitors of NO-Dependent Relaxation --- p.109 / Chapter 6.4.4. --- Effect of Indomethacin and w-conotoxin --- p.110 / Chapter 6.4.5. --- Effect of Cilnidipine on Sodium Nitroprusside-Induced Relaxation --- p.110 / Chapter 6.4.6. --- Effects on Endothelial [Ca2+]i in Isolated Endothelium-Intact Coronary Arteries --- p.110 / Chapter 6.4.7. --- Free Radical Scavenging Effect --- p.110 / Chapter 6.5. --- Discussion --- p.120 / Chapter Chapter VII - --- General Summary --- p.123 / References --- p.128
|
3 |
Mechanisms of estrogen signaling in astrocytes /Mhyre, Andrew James, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 87-95).
|
4 |
Selective estrogen receptor modulators, nitric oxide and vascular reactivity. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
Wong Chi Ming. / "August 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 182-215). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
5 |
Modification of anticancer drug sensitivity of human prostate cancer cells by estrogen related compounds.January 1998 (has links)
by Cheung Tak Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 117-123). / Abstract also in Chinese. / Acknowledgeements --- p.i / Abbreviations --- p.ii / Abstract --- p.v / List of Figures --- p.viii / List of Tables --- p.xiv / Contents --- p.xv / Contents / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Epidemiological Risk Factors --- p.1 / Chapter 1.1.1 --- Age --- p.1 / Chapter 1.1.2 --- Race --- p.2 / Chapter 1.1.3 --- Environmental or Migratory Factor --- p.2 / Chapter 1.1.4 --- Diet --- p.2 / Chapter 1.1.5 --- Genetics --- p.3 / Chapter 1.2 --- Regulation of Normal Prostate Development and Function --- p.4 / Chapter 1.3 --- Biochemistry and Development of Prostate Cancer --- p.6 / Chapter 1.3.1 --- Androgen-Dependent Prostate Cancer --- p.6 / Chapter 1.3.2 --- Androgen-Independent Prostate Cancer --- p.8 / Chapter 1.4 --- Classification of Prostate Cancer --- p.9 / Chapter 1.4.1 --- Stage A Prostate Cancer --- p.10 / Chapter 1.4.2 --- Stage B Prostate Cancer --- p.10 / Chapter 1.4.3 --- Stage C Prostate Cancer --- p.11 / Chapter 1.4.4 --- Stage D Prostate Cancer --- p.11 / Chapter 1.5 --- Methods for Early Detection of Prostate Cancer --- p.12 / Chapter 1.6 --- Clinical Treatment of Prostate Cancer --- p.12 / Chapter 1.6.1 --- Surgery --- p.12 / Chapter 1.6.2 --- Radiotherapy --- p.13 / Chapter 1.6.3 --- Chemotherapy --- p.13 / Chapter 1.6.4 --- Hormonal Therapy --- p.13 / Chapter 1.7 --- Objective --- p.14 / Chapter 1.8 --- Estrogen and Its Related Compounds --- p.16 / Chapter 1.8.1 --- 17β-Estradiol --- p.16 / Chapter 1.8.2 --- Tamoxifen --- p.18 / Chapter 1.8.3 --- Aromatase Inhibitor --- p.20 / Chapter 1.9 --- Anticancer Drugs --- p.23 / Chapter 1.9.1 --- Doxorubicin --- p.23 / Chapter 1.9.2 --- cis-Platinum --- p.24 / Chapter 1.10 --- Apoptotic Pathways --- p.25 / Chapter 1.10.1 --- BCL-2 /BAD Pathway --- p.26 / Chapter 1.10.2 --- FADD Pathway --- p.27 / Chapter 1.10.3 --- CAS Pathway --- p.27 / Chapter 2. --- Materials and Methods --- p.28 / Chapter 2.1 --- Materials --- p.28 / Chapter 2.2 --- Cell Lines --- p.32 / Chapter 2.3 --- Preparation of Drugs --- p.32 / Chapter 2.4 --- Drug Sensitivity Assay --- p.33 / Chapter 2.5 --- Cell Cycle Analysis --- p.35 / Chapter 2.6 --- DNA Fragmentation Assay --- p.36 / Chapter 2.7 --- Annexin Binding Assay --- p.37 / Chapter 2.8 --- Western Blot Analysis --- p.38 / Chapter 2.9 --- Data Analysis --- p.41 / Chapter 3. --- Results --- p.42 / Chapter 3.1 --- Response of Human Androgen-Independent Prostate Cancer Cells to Doxorubicin and cis-Platinum --- p.42 / Chapter 3.2 --- The Effect of 17p-Estradiol on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.45 / Chapter 3.2.1 --- 17β-Estradiol on Cell Growth --- p.45 / Chapter 3.2.2 --- 17β-Estradiol on Anticancer Drug Sensitivity --- p.45 / Chapter 3.2.3 --- 17β-Estradiol and Doxorubicin on Cell Cycle Progression --- p.51 / Chapter 3.2.4 --- 17β-Estradiol and Doxorubicin Induced DNA Fragmentation --- p.57 / Chapter 3.2.5 --- 17β-Estradiol and Doxorubicin on Annexin Staining --- p.59 / Chapter 3.2.6 --- 17β-Estradiol and Doxorubicin on Apoptotic Protein Expression --- p.62 / Chapter 3.3 --- The Effect of Tamoxifen on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.64 / Chapter 3.3.1 --- Tamoxifen on Cell Growth of Human --- p.65 / Chapter 3.3.2 --- Tamoxifen on Anticancer Drug Sensitivity --- p.65 / Chapter 3.3.3 --- Tamoxifen and Doxorubicin on Cell Cycle Progression --- p.71 / Chapter 3.3.4 --- Tamoxifen and Doxorubicin Induced DNA Fragmentation --- p.76 / Chapter 3.3.5 --- Tamoxifen and Doxorubicin on Annexin Staining --- p.78 / Chapter 3.3.6 --- Tamoxifen and Doxorubicin on Apoptotic Protein Expression --- p.79 / Chapter 3.4 --- The Effect of Aromatase Inhibtiors on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.81 / Chapter 3.4.1 --- Aromatase Inhibitors on Cell Growth --- p.81 / Chapter 3.4.2 --- Aromatase Inhibitors on Anticancer Drug Sensitivity --- p.83 / Chapter 3.4.3 --- 4-AcA and Doxorubicin on Cell Cycle Progression --- p.93 / Chapter 3.4.4 --- 4-AcA and Doxorubicin Induced DNA Fragmentation --- p.99 / Chapter 3.4.5 --- 4-AcA and Doxorubicin on Annexin Staining --- p.100 / Chapter 3.4.6 --- 4-AcA and Doxorubicin on Apoptotic Protein Expression --- p.102 / Chapter 4. --- Discussion --- p.105 / Chapter 4.1 --- 17 β-Estradiol and Anticancer Drug Sensitivity --- p.106 / Chapter 4.2 --- Tamoxifen and Anticancer Drug Sensitivity --- p.109 / Chapter 4.3 --- Aromatase Inhibitors and Anticancer Drug Sensitivity --- p.112 / Chapter 4.4 --- DU145 Cells vs PC3 Cells --- p.115 / Chapter 5. --- Conclusion and Perspectives --- p.116 / Chapter 6. --- References --- p.117
|
6 |
Mechanisms of estrogen rapid signaling /Wade, Christian Bernard, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 93-113).
|
7 |
The effects of the selective estrogen receptor modulators MPP and raloxifene in normal and cancerous human and murine uterine tissueDavis, Angela Marie. January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 21, 2008) Includes bibliographical references.
|
8 |
Synthesis of compounds capable of producing cytotoxic N3-methyladenine DNA adducts in estrogen receptor positive cells /Perry, Heather N. January 2007 (has links) (PDF)
Thesis (M.S.)--University of North Carolina Wilmington, 2007. / Includes bibliographical references (Leaves: 110-116)
|
9 |
Molecular mechanisms of alternative estrogen receptor signaling /Björnström, Linda, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 4 uppsatser.
|
10 |
Effect of estrogen on longitudinal bone growth /Chagin, Andrei S., January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
|
Page generated in 0.0895 seconds