• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 15
  • 11
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mammographic breast density and postmenopausal hormone therapy /

Lundström, Eva, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
2

Modulation of vascular reactivity by selective estrogen receptor modulators and dihydropyridines in porcine coronary arteries.

January 2005 (has links)
Leung Hok Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 128-147). / Abstracts in English and Chinese. / Declaration --- p.i / Acknowledgements --- p.ii / Abbreviation --- p.iii / Abstract in English --- p.iv / Abstract in Chinese --- p.vi / Contents --- p.viii / Chapter Chapter I - --- Introduction / Chapter 1.1. --- Steroid Hormone --- p.1 / Chapter 1.2. --- Estrogen Receptors --- p.2 / Chapter 1.3. --- Selective Estrogen Receptor Modulators --- p.5 / Chapter 1.3.1. --- Tamoxifen --- p.5 / Chapter 1.3.1.1. --- Cardiovascular Effects of Tamoxifen --- p.6 / Chapter 1.3.1.2. --- Acute Vascular Effects of Tamoxifen --- p.6 / Chapter 1.3.1.3. --- Chronic Vascular Effects of Tamoxifen --- p.7 / Chapter 1.3.1.4. --- Antioxidant Effects of Tamoxifen --- p.8 / Chapter 1.3.2. --- Raloxifene --- p.8 / Chapter 1.3.2.1. --- Cardiovascular Effects of Raloxifene --- p.8 / Chapter 1.3.2.2. --- Acute Vascular Effects of Raloxifene --- p.9 / Chapter 1.3.2.3. --- Chronic Vascular Effects of Raloxifene --- p.10 / Chapter 1.3.2.4. --- Ovariectomy and Raloxifene Treatment --- p.11 / Chapter 1.4. --- Mechanism of Action of SERMs --- p.15 / Chapter 1.5. --- Effects of Functional Endothelium and Nitric Oxide --- p.18 / Chapter 1.6. --- Dihydropyridine (DHP) Calcium Channel Antagonists --- p.19 / Chapter 1.6.1. --- Development of Newer Generation of Dihydropyridines --- p.19 / Chapter 1.6.2. --- Effects of Dihydropyridines on Vascular Endothelium (I) --- p.20 / Chapter 1.6.3. --- Effects of Dihydropyridines on Vascular Endothelium (II) --- p.21 / Chapter 1.6.4. --- Effects of Dihydropyridines on Nitric Oxide Synthase (NOS) --- p.21 / Chapter 1.6.5. --- Clinical Studies of Dihydropyridines --- p.22 / Chapter 1.7. --- Vascular Ion Channels --- p.25 / Chapter 1.8. --- Objectives of The Present Study --- p.26 / Chapter Chapter II - --- Materials and Methods / Chapter 2.1. --- Tissue Preparation --- p.27 / Chapter 2.1.1. --- Preparation of The Porcine Left Circumflex Coronary Arteries --- p.27 / Chapter 2.1.2. --- Removal of Functional Endothelium --- p.27 / Chapter 2.1.3. --- Organ Bath Setup --- p.27 / Chapter 2.1.4. --- Isometric Force Measurement --- p.29 / Chapter 2.2. --- In situ Endothelial [Ca2+]i Imaging --- p.29 / Chapter 2.2.1. --- Preparation of Porcine Left Circumflex Coronary Arteries --- p.29 / Chapter 2.2.2. --- Setup For In situ Endothelial [Ca2+]i Imaging --- p.30 / Chapter 2.3. --- Electrophysiological Measurement of BKCa Current --- p.31 / Chapter 2.3.1. --- Enzymatic Dissociation of Coronary Artery Smooth Muscle Cells --- p.31 / Chapter 2.3.2. --- Electrophysiological Measurement --- p.31 / Chapter 2.4. --- DPPH Free Radical Scavenging Assay --- p.31 / Chapter 2.5. --- Solutions and Drugs --- p.32 / Chapter 2.5.1. --- "Drugs, Chemicals and Enzymes" --- p.32 / Chapter 2.5.2. --- Solutions Used in Force Measurement --- p.34 / Chapter 2.6. --- Statistical Analysis --- p.34 / Chapter Chapter III - --- Tamoxifen-Induced Endothelial Nitric Oxide-Dependent Relaxation in Porcine Coronary Arteries via Ouabain- and BaCl2-Sensitive Mechanisms / Chapter 3.1. --- Abstract --- p.35 / Chapter 3.2. --- Introduction --- p.36 / Chapter 3.3. --- Methods and Materials --- p.37 / Chapter 3.3.1. --- Vessel Preparation --- p.37 / Chapter 3.3.2. --- Isometric Force Measurement --- p.38 / Chapter 3.3.3. --- In situ Endothelial [Ca2+]i Imaging --- p.39 / Chapter 3.3.4. --- Chemicals --- p.40 / Chapter 3.3.5. --- Data Analysis --- p.40 / Chapter 3.4. --- Results --- p.41 / Chapter 3.4.1. --- Relaxant Responses --- p.41 / Chapter 3.4.2. --- Effects of Inhibitors of NO-Dependent Relaxation --- p.41 / Chapter 3.4.3. --- Effects of Putative K+ Channel Blockers and Ouabain --- p.41 / Chapter 3.4.4. --- "Effects of Ouabain, Removal of Extracellular K+ Ions and BaCI2" --- p.42 / Chapter 3.4.5. --- SNP-Induced Relaxation --- p.42 / Chapter 3.4.6. --- Effects of Actinomycin D and Cycloheximide --- p.42 / Chapter 3.4.7. --- Relaxant Effect of 17β-Estradiol --- p.43 / Chapter 3.4.8. --- Effects on Endothelial [Ca2+]i in Isolated Coronary Arteries With Endothelium --- p.43 / Chapter 3.5. --- Discussion --- p.53 / Chapter Chapter IV - --- Endothelium-Independent Relaxation to Raloxifene in Porcine Coronary Arteries / Chapter 4.1. --- Abstract --- p.57 / Chapter 4.2. --- Introduction --- p.58 / Chapter 4.3. --- Methods and Materials --- p.59 / Chapter 4.3.1. --- Vessel Preparation --- p.59 / Chapter 4.3.2. --- Isometric Force Measurement --- p.60 / Chapter 4.3.3. --- Electrophysiological Measurement of BKCa Current --- p.61 / Chapter 4.3.3.1. --- Enzymatic Dissociation of Coronary Artery Smooth Muscle --- p.61 / Chapter 4.3.3.2. --- Electrophysiological Measurement --- p.62 / Chapter 4.3.4. --- Chemicals --- p.63 / Chapter 4.3.5. --- Data Analysis --- p.63 / Chapter 4.4. --- Results --- p.64 / Chapter 4.4.1. --- Effect of Raloxifene on Agonist-Induced Contractions --- p.64 / Chapter 4.4.2. --- Role of Endothelium --- p.64 / Chapter 4.4.3. --- Effect of ER Antagonist --- p.65 / Chapter 4.4.4. --- Effect of Putative K+ Channel Blockers --- p.65 / Chapter 4.4.5. --- Effect of Elevated Extracellular K+ Concentrations --- p.65 / Chapter 4.4.6. --- Effects of Raloxifene on BKCa Current --- p.65 / Chapter 4.5. --- Discussion --- p.75 / Chapter Chapter V - --- Therapeutic Concentrations of Raloxifene Augment Bradykinin Mediated Nitric Oxide-Dependent Relaxation in Porcine Coronary Arteries / Chapter 5.1. --- Abstract --- p.78 / Chapter 5.2. --- Introduction --- p.79 / Chapter 5.3. --- Methods and Materials --- p.80 / Chapter 5.3.1. --- Vessel Preparation --- p.80 / Chapter 5.3.2. --- Isometric Force Measurement --- p.80 / Chapter 5.3.3. --- In situ Endothelial [Ca2+]i Imaging --- p.81 / Chapter 5.3.4. --- Free Radical Scavenging Assay --- p.82 / Chapter 5.3.5. --- Chemicals --- p.83 / Chapter 5.3.6. --- Data Analysis --- p.83 / Chapter 5.4. --- Results --- p.84 / Chapter 5.4.1. --- Relaxation to Bradykinin --- p.84 / Chapter 5.4.2. --- Effect of Raloxifene on Bradykinin-Induced Relaxation --- p.84 / Chapter 5.4.3. --- Effect of Raloxifene on Relaxation Induced by Substance P and --- p.85 / Chapter 5.4.4. --- Effect of Estrogen on Bradykinin-Induced Relaxation --- p.85 / Chapter 5.4.5. --- Effect of Raloxifene on Sodium Nitroprusside-Induced Relaxation --- p.86 / Chapter 5.4.6. --- Free Radical Scavenging Effect --- p.86 / Chapter 5.4.7. --- Raloxifene Augmentation of Bradykinin-Stimulated Endothelial [Ca2+]i --- p.86 / Chapter 5.5. --- Discussion --- p.99 / Chapter Chapter VI - --- "Cilnidipine, a Slow-Acting Ca2+ Channel Blocker, Induces Relaxation in Porcine Coronary Arteries: Role of Endothelial Nitric Oxide and [Ca2+]i" / Chapter 6.1. --- Abstract --- p.102 / Chapter 6.2. --- Introduction --- p.103 / Chapter 6.3. --- Methods and Materials --- p.104 / Chapter 6.3.1. --- Vessel Preparation --- p.104 / Chapter 6.3.2. --- Isometric Force Measurement --- p.105 / Chapter 6.3.3. --- In situ Endothelial [Ca2+]i Imaging --- p.106 / Chapter 6.3.4. --- Free Radical Scavenging Assay --- p.107 / Chapter 6.3.5. --- Chemicals --- p.108 / Chapter 6.3.6 --- Data Analysis --- p.108 / Chapter 6.4. --- Results --- p.108 / Chapter 6.4.1. --- Relaxant Responses --- p.108 / Chapter 6.4.2. --- Role of the Endothelium --- p.109 / Chapter 6.4.3. --- Effect of Inhibitors of NO-Dependent Relaxation --- p.109 / Chapter 6.4.4. --- Effect of Indomethacin and w-conotoxin --- p.110 / Chapter 6.4.5. --- Effect of Cilnidipine on Sodium Nitroprusside-Induced Relaxation --- p.110 / Chapter 6.4.6. --- Effects on Endothelial [Ca2+]i in Isolated Endothelium-Intact Coronary Arteries --- p.110 / Chapter 6.4.7. --- Free Radical Scavenging Effect --- p.110 / Chapter 6.5. --- Discussion --- p.120 / Chapter Chapter VII - --- General Summary --- p.123 / References --- p.128
3

Mechanisms of estrogen signaling in astrocytes /

Mhyre, Andrew James, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 87-95).
4

Selective estrogen receptor modulators, nitric oxide and vascular reactivity. / CUHK electronic theses & dissertations collection

January 2004 (has links)
Wong Chi Ming. / "August 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 182-215). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
5

Modification of anticancer drug sensitivity of human prostate cancer cells by estrogen related compounds.

January 1998 (has links)
by Cheung Tak Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 117-123). / Abstract also in Chinese. / Acknowledgeements --- p.i / Abbreviations --- p.ii / Abstract --- p.v / List of Figures --- p.viii / List of Tables --- p.xiv / Contents --- p.xv / Contents / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Epidemiological Risk Factors --- p.1 / Chapter 1.1.1 --- Age --- p.1 / Chapter 1.1.2 --- Race --- p.2 / Chapter 1.1.3 --- Environmental or Migratory Factor --- p.2 / Chapter 1.1.4 --- Diet --- p.2 / Chapter 1.1.5 --- Genetics --- p.3 / Chapter 1.2 --- Regulation of Normal Prostate Development and Function --- p.4 / Chapter 1.3 --- Biochemistry and Development of Prostate Cancer --- p.6 / Chapter 1.3.1 --- Androgen-Dependent Prostate Cancer --- p.6 / Chapter 1.3.2 --- Androgen-Independent Prostate Cancer --- p.8 / Chapter 1.4 --- Classification of Prostate Cancer --- p.9 / Chapter 1.4.1 --- Stage A Prostate Cancer --- p.10 / Chapter 1.4.2 --- Stage B Prostate Cancer --- p.10 / Chapter 1.4.3 --- Stage C Prostate Cancer --- p.11 / Chapter 1.4.4 --- Stage D Prostate Cancer --- p.11 / Chapter 1.5 --- Methods for Early Detection of Prostate Cancer --- p.12 / Chapter 1.6 --- Clinical Treatment of Prostate Cancer --- p.12 / Chapter 1.6.1 --- Surgery --- p.12 / Chapter 1.6.2 --- Radiotherapy --- p.13 / Chapter 1.6.3 --- Chemotherapy --- p.13 / Chapter 1.6.4 --- Hormonal Therapy --- p.13 / Chapter 1.7 --- Objective --- p.14 / Chapter 1.8 --- Estrogen and Its Related Compounds --- p.16 / Chapter 1.8.1 --- 17β-Estradiol --- p.16 / Chapter 1.8.2 --- Tamoxifen --- p.18 / Chapter 1.8.3 --- Aromatase Inhibitor --- p.20 / Chapter 1.9 --- Anticancer Drugs --- p.23 / Chapter 1.9.1 --- Doxorubicin --- p.23 / Chapter 1.9.2 --- cis-Platinum --- p.24 / Chapter 1.10 --- Apoptotic Pathways --- p.25 / Chapter 1.10.1 --- BCL-2 /BAD Pathway --- p.26 / Chapter 1.10.2 --- FADD Pathway --- p.27 / Chapter 1.10.3 --- CAS Pathway --- p.27 / Chapter 2. --- Materials and Methods --- p.28 / Chapter 2.1 --- Materials --- p.28 / Chapter 2.2 --- Cell Lines --- p.32 / Chapter 2.3 --- Preparation of Drugs --- p.32 / Chapter 2.4 --- Drug Sensitivity Assay --- p.33 / Chapter 2.5 --- Cell Cycle Analysis --- p.35 / Chapter 2.6 --- DNA Fragmentation Assay --- p.36 / Chapter 2.7 --- Annexin Binding Assay --- p.37 / Chapter 2.8 --- Western Blot Analysis --- p.38 / Chapter 2.9 --- Data Analysis --- p.41 / Chapter 3. --- Results --- p.42 / Chapter 3.1 --- Response of Human Androgen-Independent Prostate Cancer Cells to Doxorubicin and cis-Platinum --- p.42 / Chapter 3.2 --- The Effect of 17p-Estradiol on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.45 / Chapter 3.2.1 --- 17β-Estradiol on Cell Growth --- p.45 / Chapter 3.2.2 --- 17β-Estradiol on Anticancer Drug Sensitivity --- p.45 / Chapter 3.2.3 --- 17β-Estradiol and Doxorubicin on Cell Cycle Progression --- p.51 / Chapter 3.2.4 --- 17β-Estradiol and Doxorubicin Induced DNA Fragmentation --- p.57 / Chapter 3.2.5 --- 17β-Estradiol and Doxorubicin on Annexin Staining --- p.59 / Chapter 3.2.6 --- 17β-Estradiol and Doxorubicin on Apoptotic Protein Expression --- p.62 / Chapter 3.3 --- The Effect of Tamoxifen on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.64 / Chapter 3.3.1 --- Tamoxifen on Cell Growth of Human --- p.65 / Chapter 3.3.2 --- Tamoxifen on Anticancer Drug Sensitivity --- p.65 / Chapter 3.3.3 --- Tamoxifen and Doxorubicin on Cell Cycle Progression --- p.71 / Chapter 3.3.4 --- Tamoxifen and Doxorubicin Induced DNA Fragmentation --- p.76 / Chapter 3.3.5 --- Tamoxifen and Doxorubicin on Annexin Staining --- p.78 / Chapter 3.3.6 --- Tamoxifen and Doxorubicin on Apoptotic Protein Expression --- p.79 / Chapter 3.4 --- The Effect of Aromatase Inhibtiors on the Growth and Anticancer Drug Sensitivity of Human Androgen-Independent Prostate Cancer Cells --- p.81 / Chapter 3.4.1 --- Aromatase Inhibitors on Cell Growth --- p.81 / Chapter 3.4.2 --- Aromatase Inhibitors on Anticancer Drug Sensitivity --- p.83 / Chapter 3.4.3 --- 4-AcA and Doxorubicin on Cell Cycle Progression --- p.93 / Chapter 3.4.4 --- 4-AcA and Doxorubicin Induced DNA Fragmentation --- p.99 / Chapter 3.4.5 --- 4-AcA and Doxorubicin on Annexin Staining --- p.100 / Chapter 3.4.6 --- 4-AcA and Doxorubicin on Apoptotic Protein Expression --- p.102 / Chapter 4. --- Discussion --- p.105 / Chapter 4.1 --- 17 β-Estradiol and Anticancer Drug Sensitivity --- p.106 / Chapter 4.2 --- Tamoxifen and Anticancer Drug Sensitivity --- p.109 / Chapter 4.3 --- Aromatase Inhibitors and Anticancer Drug Sensitivity --- p.112 / Chapter 4.4 --- DU145 Cells vs PC3 Cells --- p.115 / Chapter 5. --- Conclusion and Perspectives --- p.116 / Chapter 6. --- References --- p.117
6

Mechanisms of estrogen rapid signaling /

Wade, Christian Bernard, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 93-113).
7

The effects of the selective estrogen receptor modulators MPP and raloxifene in normal and cancerous human and murine uterine tissue

Davis, Angela Marie. January 2007 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 21, 2008) Includes bibliographical references.
8

Synthesis of compounds capable of producing cytotoxic N3-methyladenine DNA adducts in estrogen receptor positive cells /

Perry, Heather N. January 2007 (has links) (PDF)
Thesis (M.S.)--University of North Carolina Wilmington, 2007. / Includes bibliographical references (Leaves: 110-116)
9

Molecular mechanisms of alternative estrogen receptor signaling /

Björnström, Linda, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 4 uppsatser.
10

Effect of estrogen on longitudinal bone growth /

Chagin, Andrei S., January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.

Page generated in 0.1088 seconds