• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 44
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Conceptual Architecture for an Event-based Information Aggregation Engine in Smart Logistics

Cabanillas Macias, Cristina, Baumgrass, Anne, Di Ciccio, Claudio 09 1900 (has links) (PDF)
The field of Smart Logistics is attracting interest in several areas of research, including Business Process Management. Awide range of research works are carried out to enhance the capability of monitoring the execution of ongoing logistics processes and predict their likely evolvement. In order to do this, it is crucial to have in place an IT infrastructure that provides the capability of automatically intercepting the digitalised transportation-related events stemming from widespread sources, along with their elaboration, interpretation and dispatching. In this context, we present here the service-oriented software architecture of such an event-based information engine. In particular, we describe the requisites that it must meet. Thereafter, we present the interfaces and subsequently the service-oriented components that are in charge of realising them. The outlined architecture is being utilised as the reference model for an ongoing European research project on Smart Logistics, namely GET Service.
12

Shared Complex Event Trend Aggregation

Rozet, Allison M. 07 May 2020 (has links)
Streaming analytics deploy Kleene pattern queries to detect and aggregate event trends against high-rate data streams. Despite increasing workloads, most state-of-the-art systems process each query independently, thus missing cost-saving sharing opportunities. Sharing complex event trend aggregation poses several technical challenges. First, the execution of nested and diverse Kleene patterns is difficult to share. Second, we must share aggregate computation without the exponential costs of constructing the event trends. Third, not all sharing opportunities are beneficial because sharing aggregation introduces overhead. We propose a novel framework, Muse (Multi-query Snapshot Execution), that shares aggregation queries with Kleene patterns while avoiding expensive trend construction. It adopts an online sharing strategy that eliminates re-computations for shared sub-patterns. To determine the beneficial sharing plan, we introduce a cost model to estimate the sharing benefit and design the Muse refinement algorithm to efficiently select robust sharing candidates from the search space. Finally, we explore optimization decisions to further improve performance. Our experiments over a wide range of scenarios demonstrate that Muse increases throughput by 4 orders of magnitude compared to state-of-the-art approaches with negligible memory requirements.
13

Examining Mental Imagery and Post-event Processing among Socially Anxious Individuals

Brozovich, Faith Auriel January 2012 (has links)
Social anxiety disorder (SAD) is characterized by an intense fear of negative evaluation from others in social and/or performance situations. Research has demonstrated that socially anxious individuals' post-event processing, or post-mortem review of social situations, often affects their levels of anxiety, negative emotions, interpretations, and memories of events (Brozovich & Heimberg, 2008). Furthermore, research has shown that processing negative descriptions using imagery is more emotion-evoking than semantic processing of the same material (Holmes & Mathews, 2005; Holmes & Mathews, 2010). The present study investigated post-event processing involving mental imagery and its effects on mood, anxiety, and potentially biased interpretations of social and nonsocial events. Socially anxious and non-anxious participants were told they would give a 5 min impromptu speech at the end of the experimental session. They were then randomly assigned to one of three manipulation conditions: post-event processing imagery (PEP-Imagery), post-event processing semantic (PEP-Semantic), or a Control condition. In the post-event processing conditions, participants recalled a past anxiety-provoking speech and thought about the anticipated speech either using imagery (PEP-Imagery) or focusing on their meaning (PEP-Semantic). Following the condition manipulation, participants completed a variety of affect, anxiety, and interpretation measures. Consistent with our predictions, socially anxious individuals in the PEP-Imagery condition displayed greater anxiety than individuals in the other conditions immediately following the induction and before the anticipated speech task. Socially anxious individuals in the PEP-Imagery condition also interpreted ambiguous scenarios in a more socially anxious manner than individuals in the Control condition. The impact of imagery during post-event processing in social anxiety and its implications for cognitive-behavioral interventions are discussed. / Psychology
14

Runtime MPI Correctness Checking with a Scalable Tools Infrastructure

Hilbrich, Tobias 24 February 2016 (has links) (PDF)
Increasing computational demand of simulations motivates the use of parallel computing systems. At the same time, this parallelism poses challenges to application developers. The Message Passing Interface (MPI) is a de-facto standard for distributed memory programming in high performance computing. However, its use also enables complex parallel programing errors such as races, communication errors, and deadlocks. Automatic tools can assist application developers in the detection and removal of such errors. This thesis considers tools that detect such errors during an application run and advances them towards a combination of both precise checks (neither false positives nor false negatives) and scalability. This includes novel hierarchical checks that provide scalability, as well as a formal basis for a distributed deadlock detection approach. At the same time, the development of parallel runtime tools is challenging and time consuming, especially if scalability and portability are key design goals. Current tool development projects often create similar tool components, while component reuse remains low. To provide a perspective towards more efficient tool development, which simplifies scalable implementations, component reuse, and tool integration, this thesis proposes an abstraction for a parallel tools infrastructure along with a prototype implementation. This abstraction overcomes the use of multiple interfaces for different types of tool functionality, which limit flexible component reuse. Thus, this thesis advances runtime error detection tools and uses their redesign and their increased scalability requirements to apply and evaluate a novel tool infrastructure abstraction. The new abstraction ultimately allows developers to focus on their tool functionality, rather than on developing or integrating common tool components. The use of such an abstraction in wide ranges of parallel runtime tool development projects could greatly increase component reuse. Thus, decreasing tool development time and cost. An application study with up to 16,384 application processes demonstrates the applicability of both the proposed runtime correctness concepts and of the proposed tools infrastructure.
15

State Management for Efficient Event Pattern Detection

Zhao, Bo 20 May 2022 (has links)
Event Stream Processing (ESP) Systeme überwachen kontinuierliche Datenströme, um benutzerdefinierte Queries auszuwerten. Die Herausforderung besteht darin, dass die Queryverarbeitung zustandsbehaftet ist und die Anzahl von Teilübereinstimmungen mit der Größe der verarbeiteten Events exponentiell anwächst. Die Dynamik von Streams und die Notwendigkeit, entfernte Daten zu integrieren, erschweren die Zustandsverwaltung. Erstens liefern heterogene Eventquellen Streams mit unvorhersehbaren Eingaberaten und Queryselektivitäten. Während Spitzenzeiten ist eine erschöpfende Verarbeitung unmöglich, und die Systeme müssen auf eine Best-Effort-Verarbeitung zurückgreifen. Zweitens erfordern Queries möglicherweise externe Daten, um ein bestimmtes Event für eine Query auszuwählen. Solche Abhängigkeiten sind problematisch: Das Abrufen der Daten unterbricht die Stream-Verarbeitung. Ohne eine Eventauswahl auf Grundlage externer Daten wird das Wachstum von Teilübereinstimmungen verstärkt. In dieser Dissertation stelle ich Strategien für optimiertes Zustandsmanagement von ESP Systemen vor. Zuerst ermögliche ich eine Best-Effort-Verarbeitung mittels Load Shedding. Dabei werden sowohl Eingabeeevents als auch Teilübereinstimmungen systematisch verworfen, um eine Latenzschwelle mit minimalem Qualitätsverlust zu garantieren. Zweitens integriere ich externe Daten, indem ich das Abrufen dieser von der Verwendung in der Queryverarbeitung entkoppele. Mit einem effizienten Caching-Mechanismus vermeide ich Unterbrechungen durch Übertragungslatenzen. Dazu werden externe Daten basierend auf ihrer erwarteten Verwendung vorab abgerufen und mittels Lazy Evaluation bei der Eventauswahl berücksichtigt. Dabei wird ein Kostenmodell verwendet, um zu bestimmen, wann welche externen Daten abgerufen und wie lange sie im Cache aufbewahrt werden sollen. Ich habe die Effektivität und Effizienz der vorgeschlagenen Strategien anhand von synthetischen und realen Daten ausgewertet und unter Beweis gestellt. / Event stream processing systems continuously evaluate queries over event streams to detect user-specified patterns with low latency. However, the challenge is that query processing is stateful and it maintains partial matches that grow exponentially in the size of processed events. State management is complicated by the dynamicity of streams and the need to integrate remote data. First, heterogeneous event sources yield dynamic streams with unpredictable input rates, data distributions, and query selectivities. During peak times, exhaustive processing is unreasonable, and systems shall resort to best-effort processing. Second, queries may require remote data to select a specific event for a pattern. Such dependencies are problematic: Fetching the remote data interrupts the stream processing. Yet, without event selection based on remote data, the growth of partial matches is amplified. In this dissertation, I present strategies for optimised state management in event pattern detection. First, I enable best-effort processing with load shedding that discards both input events and partial matches. I carefully select the shedding elements to satisfy a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate remote data, I decouple the fetching of remote data from its use in query evaluation by a caching mechanism. To this end, I hide the transmission latency by prefetching remote data based on anticipated use and by lazy evaluation that postpones the event selection based on remote data to avoid interruptions. A cost model is used to determine when to fetch which remote data items and how long to keep them in the cache. I evaluated the above techniques with queries over synthetic and real-world data. I show that the load shedding technique significantly improves the recall of pattern detection over baseline approaches, while the technique for remote data integration significantly reduces the pattern detection latency.
16

Extending Complex Event Processing for Advanced Applications

Wang, Di 30 April 2013 (has links)
Recently numerous emerging applications, ranging from on-line financial transactions, RFID based supply chain management, traffic monitoring to real-time object monitoring, generate high-volume event streams. To meet the needs of processing event data streams in real-time, Complex Event Processing technology (CEP) has been developed with the focus on detecting occurrences of particular composite patterns of events. By analyzing and constructing several real-world CEP applications, we found that CEP needs to be extended with advanced services beyond detecting pattern queries. We summarize these emerging needs in three orthogonal directions. First, for applications which require access to both streaming and stored data, we need to provide a clear semantics and efficient schedulers in the face of concurrent access and failures. Second, when a CEP system is deployed in a sensitive environment such as health care, we wish to mitigate possible privacy leaks. Third, when input events do not carry the identification of the object being monitored, we need to infer the probabilistic identification of events before feed them to a CEP engine. Therefore this dissertation discusses the construction of a framework for extending CEP to support these critical services. First, existing CEP technology is limited in its capability of reacting to opportunities and risks detected by pattern queries. We propose to tackle this unsolved problem by embedding active rule support within the CEP engine. The main challenge is to handle interactions between queries and reactions to queries in the high-volume stream execution. We hence introduce a novel stream-oriented transactional model along with a family of stream transaction scheduling algorithms that ensure the correctness of concurrent stream execution. And then we demonstrate the proposed technology by applying it to a real-world healthcare system and evaluate the stream transaction scheduling algorithms extensively using real-world workload. Second, we are the first to study the privacy implications of CEP systems. Specifically we consider how to suppress events on a stream to reduce the disclosure of sensitive patterns, while ensuring that nonsensitive patterns continue to be reported by the CEP engine. We formally define the problem of utility-maximizing event suppression for privacy preservation. We then design a suite of real-time solutions that eliminate private pattern matches while maximizing the overall utility. Our first solution optimally solves the problem at the event-type level. The second solution, at event-instance level, further optimizes the event-type level solution by exploiting runtime event distributions using advanced pattern match cardinality estimation techniques. Our experimental evaluation over both real-world and synthetic event streams shows that our algorithms are effective in maximizing utility yet still efficient enough to offer near real time system responsiveness. Third, we observe that in many real-world object monitoring applications where the CEP technology is adopted, not all sensed events carry the identification of the object whose action they report on, so called €œnon-ID-ed€� events. Such non-ID-ed events prevent us from performing object-based analytics, such as tracking, alerting and pattern matching. We propose a probabilistic inference framework to tackle this problem by inferring the missing object identification associated with an event. Specifically, as a foundation we design a time-varying graphic model to capture correspondences between sensed events and objects. Upon this model, we elaborate how to adapt the state-of-the-art Forward-backward inference algorithm to continuously infer probabilistic identifications for non-ID-ed events. More important, we propose a suite of strategies for optimizing the performance of inference. Our experimental results, using large-volume streams of a real-world health care application, demonstrate the accuracy, efficiency, and scalability of the proposed technology.
17

Towards Semantically Enabled Complex Event Processing

Keskisärkkä, Robin January 2017 (has links)
The Semantic Web provides a framework for semantically annotating data on the web, and the Resource Description Framework (RDF) supports the integration of structured data represented in heterogeneous formats. Traditionally, the Semantic Web has focused primarily on more or less static data, but information on the web today is becoming increasingly dynamic. RDF Stream Processing (RSP) systems address this issue by adding support for streaming data and continuous query processing. To some extent, RSP systems can be used to perform complex event processing (CEP), where meaningful high-level events are generated based on low-level events from multiple sources; however, there are several challenges with respect to using RSP in this context. Event models designed to represent static event information lack several features required for CEP, and are typically not well suited for stream reasoning. The dynamic nature of streaming data also greatly complicates the development and validation of RSP queries. Therefore, reusing queries that have been prepared ahead of time is important to be able to support real-time decision-making. Additionally, there are limitations in existing RSP implementations in terms of both scalability and expressiveness, where some features required in CEP are not supported by any of the current systems. The goal of this thesis work has been to address some of these challenges and the main contributions of the thesis are: (1) an event model ontology targeted at supporting CEP; (2) a model for representing parameterized RSP queries as reusable templates; and (3) an architecture that allows RSP systems to be integrated for use in CEP. The proposed event model tackles issues specifically related to event modeling in CEP that have not been sufficiently covered by other event models, includes support for event encapsulation and event payloads, and can easily be extended to fit specific use-cases. The model for representing RSP query templates was designed as an extension to SPIN, a vocabulary that supports modeling of SPARQL queries as RDF. The extended model supports the current version of the RSP Query Language (RSP-QL) developed by the RDF Stream Processing Community Group, along with some of the most popular RSP query languages. Finally, the proposed architecture views RSP queries as individual event processing agents in a more general CEP framework. Additional event processing components can be integrated to provide support for operations that are not supported in RSP, or to provide more efficient processing for specific tasks. We demonstrate the architecture in implementations for scenarios related to traffic-incident monitoring, criminal-activity monitoring, and electronic healthcare monitoring.
18

The Effect of Post Event Processing on Response to Exposure Therapy among those with Social Anxiety Disorder

Price, Matthew 19 March 2010 (has links)
Exposure therapy has received a great deal of support as an effective treatment for social anxiety. However, not all those who undergo exposure therapy improve, and some of those who do respond continue to report significant levels of symptoms. A theorized mechanism of change for exposure therapy is extinction learning. Extinction learning is believed to occur across exposure sessions during which new associations are formed and stored in memory. Individuals with social anxiety are prone to engage in post event processing (PEP), or rumination, after social experiences, which may interfere with extinction learning, and thus attenuate response to treatment. The current study examined whether PEP limits treatment response to two different exposure based treatments, a group based cognitive behavioral intervention and an individually based virtual reality exposure therapy among participants (n = 75) diagnosed with social anxiety disorder. The findings suggested that PEP decreased as a result of treatment and that social anxiety symptoms for those with greater amounts of PEP improved at a slower rate of change than those with lower levels of PEP. Implications for the role of PEP on treatment response are discussed.
19

The Effect of Post Event Processing on Response to Exposure Therapy among those with Social Anxiety Disorder

Price, Matthew 19 March 2010 (has links)
Exposure therapy has received a great deal of support as an effective treatment for social anxiety. However, not all those who undergo exposure therapy improve, and some of those who do respond continue to report significant levels of symptoms. A theorized mechanism of change for exposure therapy is extinction learning. Extinction learning is believed to occur across exposure sessions during which new associations are formed and stored in memory. Individuals with social anxiety are prone to engage in post event processing (PEP), or rumination, after social experiences, which may interfere with extinction learning, and thus attenuate response to treatment. The current study examined whether PEP limits treatment response to two different exposure based treatments, a group based cognitive behavioral intervention and an individually based virtual reality exposure therapy among participants (n = 75) diagnosed with social anxiety disorder. The findings suggested that PEP decreased as a result of treatment and that social anxiety symptoms for those with greater amounts of PEP improved at a slower rate of change than those with lower levels of PEP. Implications for the role of PEP on treatment response are discussed.
20

A SENSOR-BASED APPROACH TO MONITORING WEB SERVICE

Li, JUN 12 November 2008 (has links)
As the use of Web expands, Web Service is gradually becoming the basic system infrastructure. However, as it matures and a large number of Web Service becomes available, the focus will shift from service development to service management. One key component in management systems is monitoring. The growing complexity of Web Service platforms and their dynamically varying workloads make manually monitoring them a demanding task. Therefore monitoring tools are required to support the management efforts. Our approach, Web Service Monitoring System (WSMS), utilizes Autonomic Computing technology to monitor Web Service for an automated manager. WSMS correlates lower level events into a meaningful diagnosed symptom which provides higher level information for problem determination. It also gains the ability to take autonomic actions and solve the original problem using corrective actions. In this thesis, a complete design of WSMS is presented along with a practical implementation showing viability and proof of concept of WSMS. / Thesis (Master, Computing) -- Queen's University, 2008-11-12 16:20:13.738

Page generated in 0.1201 seconds