Spelling suggestions: "subject:"devolution dde couche"" "subject:"devolution dee couche""
1 |
Finite nuclei under extreme conditions of mass, isospin and temperature : a relativistic Hartree-Fock-Bogoliubov description / Noyaux finis dans des conditions extrêmes de masses, d’asymétrie d’isospin et de température : une description relativiste Hartree-Fock-BogoliubovLi, Jia Jie 21 September 2015 (has links)
La théorie covariance de la fonctionnelle de la densité (CDF), basée sur un petit nombre de paramètres ajustables, a été utilisée avec succès pour décrire l’état fondamental et les états excités des noyaux de la carte nucléaire, pour A>12. Cette approche permet de décrire les systèmes nucléaires finis avec un Lagrangien hadronique universel résolu dans le cadre de l'approche Relativiste-Hartree-Fock-Bologuibov (RHFB). Ce modèle est également utilisé pour l'étude des étoiles compactes, car il peut être étendu à des densités élevées où la relativité restreinte ne peut pas être ignoré. Ce modèle peut également être étendu pour inclure la contribution des hypérons et ainsi que d'autres particules exotiques. Dans ce travail, la description et des prédictions basées sur l'approche RHFB pour les noyaux dans des conditions extrêmes de la masse, d'isospin et de température sont présentés.Dans la première partie de cette thèse, nous explorons l'apparition de nouvelles fermetures de couches sphériques pour des noyaux super-lourds, où les fermetures de couches sont caractérisées en termes de gap à deux nucléons. Les résultats dépendent légèrement des Lagrangians effectifs utilisés, mais les nombres magiques au-delà de ^{208} Pb sont prédit pour un nombre de protons Z=120 et 138, et pour un nombre de neutrons N=172, 184, 228, et 258. Les effets de couche sont sensibles à différents termes de champ de moyen, tels que le couplage spin-orbite, la masse scalaire et la masses effective, ainsi que l'interaction de tensorielle de Lorentz. Ces termes ont des poids différents dans les Lagrangians effectifs employées, expliquant les variations, somme toute petites, dans leurs prédictions. Employant le modèle RHFB le plus avancé, nous avons trouvé que le nucléide ^{304} 120 est favorisée comme étant le prochain noyau sphérique doublement magique au-delà de ^{208} Pb.Dans la deuxième partie de cette thèse, nous étudions l'apparition de nouveaux nombres magiques pour les noyaux de masse intermédiaire riches en neutrons, et nous analysons le rôle des interactions pseudo-vecteur et de tensorielle de Lorentz. Basé sur la transformation de Foldy-Wouthuysen, nous discutons en détail le rôle joué par les différents termes des interactions pseudo-vecteur et de tensorielle de Lorentz. Dans l'apparition des nouveaux nombres magiques N=16 , 32 et 34. Les noyaux ^{24} O ^{48} Si et ^{52,54} Ca sont prédits avec un grand gap au niveau de Fermi et un gap d'appariement zéro (^{24} O,^{54}Ca ) ou quasi-nul (^{48} Si,^{54} Ca), les rendant candidats pour de nouveaux nombres magiques des noyaux riches en neutrons. Nous constatons que les interactions de Lorentz pseudo-vecteur et tensorielle induisent des évolutions très spécifiques des énergies à une particule, ce qui pourrait signer la présence et la nécessité d'approches relativistes avec des interactions d'échanges de mésons.Dans la dernière partie de cette thèse, nous étudions les transitions de phase et excitations thermiques des deux noyaux stables et faiblement liés. Les prédictions de divers Lagrangiens relativistes et des différentes interactions d'appariement sont discutées. La température critique de la transition d'appariement dépend linéairement du gap d'appariement à température nulle, et cette dépendance est similaire pour une interaction de portée nulle ou bien finie. Les calculs présentés montrent des caractéristiques intéressantes des corrélations d'appariement à température finie, comme la persistance d'appariement et les phénomènes de re-entrance superfluide. En outre, nous analysons la réponse thermique de certains noyaux.En conclusion, le travail présenté dans cette thèse montre des résultats très intéressants et nouveaux pour trois des questions les plus importantes en physique nucléaire: la quête d'un nouvel îlot de stabilité dans la région des super-lourds, l'apparition de nouveaux nombres magiques dans les noyaux exotiques, et la réponse d'un système finis aux excitations thermiques. / The covariant density functional (CDF) theory with a few number of parameters has been successfully employed to describe ground-state and excited-states of nuclei over the entire nuclear landscape for A > 12. It describes finite nuclear systems with a universal hadronic Lagrangian, which is solved considering the relativistic-Hartree-Fock-Bologuibov approach (RHFB). This model is also employed for the study of compact stars, since it can be extended to high densities where special relativity cannot be ignore. This model can also be extended to include the contribution of hyperons and as well as other exotic particles. In this work, the description and some predictions based on RHFB approach for nuclei under extreme conditions of mass, isospin and temperature are presented.In the first part, we explore the occurrence of spherical shell closures for superheavy nuclei, where shell closures are characterized in terms of two-nucleon gaps. The results depend slightly on the effective Lagrangians used, but the magic numbers beyond ^{208}Pb are generally predicted to be Z = 120 and 138 for protons, and N = 172, 184, 228, and 258 for neutrons. Shell effects are sensitive to various terms of the mean-field, such as the spin-orbit coupling, the scalar and the effective masses, as well as the Lorentz-tensor interaction. These terms have different weights in the effective Lagrangians employed, explaining the (relatively small) variations in the predictions. Employing the most advanced RHFB model, we founded that the nuclide ^{304}120 is favored as being the next spherical doubly-magic nucleus beyond ^{208}Pb.In the second part, we investigate the formation of new shell gaps in intermediate mass neutron-rich nuclei, and analyze the role of the Lorentz pseudo-vector and tensor interactions. Based on the Foldy-Wouthuysen transformation, we discuss in detail the role played by the different terms of the Lorentz pseudo-vector and tensor interactions in the appearance of the N=16, 32 and 34 shell gaps. The nuclei ^{24}O, ^{48}Si and ^{52,54}Ca are predicted with a large shell gap and zero (^{24}O, ^{52}Ca) or almost zero (^{48}Si, ^{54}Ca) pairing gap, making them candidates for new magic numbers in neutron rich nuclei. We find that the Lorentz pseudo-vector and tensor interactions induce very specific evolutions of single-particle energies, which could clearly sign their presence and reveal the need for relativistic approaches with exchange interactions.In the last part, we study the phase transitions and thermal excitations of both stable and weakly-bound nuclei. The predictions of various relativistic Lagrangians and different pairing interactions are discussed. The critical temperature of the pairing transition is found to depend linearly on the zero-temperature pairing gap, and this dependence is similar for a zero-range or a finite-range pairing interaction. The present calculations show interesting features of the pairing correlations at finite temperature, such as the pairing persistence and pairing re-entrance phenomena. Also, we analyze the thermal response of some nuclei.In conclusion, the work presented in this thesis shown interesting and new results for three of the most important questions in nuclear physics: the quest for a new island of stability in the superheavy region, the appearance of new magic numbers in exotic nuclei, and the response of finite-systems to thermal excitations.
|
Page generated in 0.1193 seconds