• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3917
  • 980
  • 630
  • 338
  • 202
  • 130
  • 105
  • 87
  • 40
  • 40
  • 27
  • 27
  • 27
  • 27
  • 27
  • Tagged with
  • 7972
  • 1205
  • 806
  • 775
  • 764
  • 627
  • 613
  • 539
  • 461
  • 423
  • 410
  • 380
  • 357
  • 328
  • 317
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Standing Up to Experts: The Politics of Public Education

Thurman, Scott 12 1900 (has links)
In a small room in Austin, Texas, a group of 15 people are single-handedly deciding what is taught to the next generation of American children. The highly politicized 15 member Texas Board of Education is currently going through the once-in-a-decade process of rewriting the teaching and textbook standards for its nearly 5 million schoolchildren. Texas is also unbelievably influential on the standards that textbook publishers use as a basis for their textbooks nationwide. Over the last 10 years, the textbooks adopted by this board found their way in upwards of 65% of American classrooms. My goal is to shed light on this important issue and the key players in this process - I explain their goals, explore the scope of their influence, and delve into the personal motivations behind their actions, which will affect public education throughout the country.
142

The effects of nesting on grandparent investment

Deese, Stephanie Lynne 02 November 2016 (has links)
<p> Grandparental investment in grandchildren is a topic of interest within the field of evolutionary psychology. Studies have shown a consistent pattern of differences when it comes to each grandparent&rsquo;s investment levels (Danielsbacka, Tanskanen, Jokela, &amp; Rotkirch, 2011; DeKay, 1995; Laham, Gonsakorale, &amp; Von Hippel, 2005; Michaski &amp; Shackelford, 2005; Pollet, Nettle, &amp; Nelisson, 2006). The pattern is as follows: the maternal grandmother invests the most, followed by the maternal grandfather, the paternal grandmother, and finally the paternal grandfather. The current hypotheses and theories behind this pattern are based on previous evolutionary theories of relatedness (Hamilton, 1964) and relational certainty (Trivers, 1972). The large and consistent difference between maternal grandmothers and paternal grandfathers can be explained relatively directly based on relational uncertainty, as the maternal grandmother is the most certain that the grandchild is her genetic relative and the paternal grandfather is least certain. This explanation is widely accepted. However, the smaller but consistent differences in investment patterns by maternal grandfathers versus paternal grandmothers, in favor of the former, is not as easily explained. The two currently competing theories are as follows: (1) although maternal grandfathers and paternal grandmothers are equally uncertain of their relatedness, they invest differently depending on which generation their uncertainty lies in &ndash; the grandparent generation for the grandfather and the parent generation for the grandmother; and (2) paternal grandparents have other grandchildren for which they are maternal grandparents, and they will choose to invest more in these more certain relatives. The current research was designed to test a new hypothesis, that patterns of grandparent investment are affected by whether or not grandparents are nested (coupled and sharing resources). A survey measuring grandparent investment across four dimensions was administered and found no significant differences between certain nested and unnested grandparents in terms of investment. Results instead revealed a different overall pattern of investment entirely, indicating multiple design flaws and providing some direction for future research.</p>
143

Galaxy evolution with FMOS

Curtis Lake, Emma January 2010 (has links)
This thesis is concerned with the targeting of emission line galaxies with FMOS (Fibre Multi-Object Spectrograph) to determine properties of star forming galaxies at redshift ~1.5, and provide measurements of the growth rate of large-scale structure through Redshift Space Distortions (RSDs). I also consider the opportunities of targeting the passive galaxy population at high redshift, through measurements of their continuum. I start with the extensive broad-band photometric data available in the UKIDSS-UDS (United Kingdom Infrared Telescope Deep Sky Survey - Ultra-Deep Survey) field which is used to produce a band-merged catalogue, later used for determining photometric redshifts. In producing this catalogue, I approach the issue of source confusion present in the deep Spitzer imaging using z-band priors on profile position and shape and an iterative Expectation-Maximisation algorithm. Photometric redshift estimates are compared against colour selections as potential targeting techniques for a wide-area redshift survey with FMOS. Different photometry survey areas are considered, and the quality of selection given the available broad-band data tested, by adjusting the photometric catalogue produced for the UDS. The results indicate that the SWIRE (Spitzer Wide area InfraRed Extragalactic Survey) fields are too small to provide adequate sources with a consistent selection mechanism. The CFHTLS (Canada-Frace-Hawaii Telescope Legacy Survey) would have a large enough area given deeper z'-band imaging, and SWIRE-depth coverage in the Spitzer 3.6μm and 4.5μm bands. I present FMOS commissioning data obtained for the UDS field, including the spectroscopic targeting of sources form the High-Z Emission Line Survey (HiZELS). With this data, I am able to test the current quality of flux calibration using cool stars targeted simultaneously and the level of systematic errors left by sky-subtraction. The sample of HiZELS sources selected to place Hα at z~1.45 show low contamination from other emission lines, and only one out of 9 targets assigned a redshift has any indication of AGN activity. Finally, I present longslit observations of faint, passive galaxies at redshift z~1.9, selected as members of a possible cluster, JKCS 041, selected from broad band colours. One object was observed with high enough signal to noise to constrain the position of the 4000 Å / Balmer break, providing a tighter constraint on the photometric redshift of 1.8867 <sup>+0.0034</sup> -0.0117.
144

The evolution and dynamics of interacting populations

Marrow, Paul January 1992 (has links)
No description available.
145

The Evolution of Doors and Doorways

Griffith, Tom Jack 08 1900 (has links)
It has been desired that this work will provide interested students informative reading concerning doorways as a part of architecture. It is hoped that it will be a literary contribution to the beginning architectural student and that he study will provide a point of interest for the further study of architecture and its many elements.
146

The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

French, K. Decker, Arcavi, Iair, Zabludoff, Ann 30 January 2017 (has links)
We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10-1000 Myr ago, indicating that TDEs arise at different times in their hosts' post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12: 1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%-10% for most hosts, not enough to explain the observed 30-200x. boost in TDE rates, suggesting that the host's core stellar concentration is more important. TDE hosts have stellar masses 10(9.4)-10(10.3) M circle dot,consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10(5.5)-10(7.5) M circle dot, Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.
147

Investigating the association between germ line specification and sequence evolution in vertebrates

Evans, Teri January 2015 (has links)
Within vertebrates the primordial germ cells (PGCs) can either be induced by embryonic signals (known as epigenesis), or predetermined by maternally deposited germ plasm (preformation). Epigenesis is known to be the ancestral mechanism, while preformation has evolved multiple times. Epigenesis has been proposed to enforce a developmental constraint on the evolution of somatic structures that is released in species which acquired preformation. In accordance with this hypothesis, the mesoderm gene regulatory network is conserved between urodeles and mammals, which have retained epigenesis, but has diverged in anurans (preformation). An increase in speciation has also been shown in vertebrates which have acquired preformation. Our aims were to investigate whether the mode of PGC specification associates with the molecular evolution of protein-coding genes. We downloaded all publicly available vertebrate sequences. These were combined with our three novel transcriptomes from axolotl, sturgeon and lungfish. In line with previous analyses, we built 4-taxon trees to investigate the extent of phylogenetic incongruence. This revealed a bias associated with the mode of PGC specification, caused by a significant difference in the rate of evolution. Many genes in species that have acquired preformation are evolving significantly faster than in their sister taxa undergoing epigenesis. These sequences are typically expressed in early development, and are ancient genes with known orthologs at the base of Eukaryotes. Additionally, we show that Oct4 and Nanog, which are crucial for pluripotency, have been lost in taxa using preformation. Therefore our results are consistent with the proposal that developmental constraint, imposed by epigenesis, is released in species undergoing preformation.
148

The collecting activities of Sir John Lubbock (1834-1913)

Owen, Janet Elizabeth January 2000 (has links)
No description available.
149

Relocalisation nucléaire du gène mitochondrial ATP9 chez la levure Saccharomyces cerevisiae

Bietenhader, Maïlis 22 December 2009 (has links)
L'ancêtre a-protéobactérie endosymbiotique à l'origine des mitochondries avait son propre génome, codant pour de nombreuses fonctions redondantes, voire totalement inutiles dans la cellule hôte. Ces informations ont disparu avec le temps, alors que les autres gènes indispensables ont en grande partie été transférés au noyau de la cellule eucaryote. Aujourd'hui, plus de quatre vingt quinze pourcents des protéines mitochondriales sont codées par le génome nucléaire. La question se pose de savoir pourquoi ces gènes sont maintenus dans les organites. Une manière de répondre expérimentalement à cette question consiste à relocaliser artificiellement au noyau les gènes des organites. Nous avons testé cette relocalisation nucléaire chez la levure Saccharomyces cerevisiae. Une première étape de l'étude a consisté à déléter le gène mitochondrial ATP9 natif. La délétion du gène ATP9 mitochondrial chez S. cerevisiae conduit à de multiples effets délétères sur la stabilité du génome mitochondrial, son expression, le contenu en complexes de la chaîne respiratoire, mais aussi sur la morphologie des mitochondries. Des expériences antérieures, décrites dans la littérature, avaient échouées dans la relocalisation nucléaire du gène ATP9 de S. cerevisiae. J'ai réussi la relocalisation nucléaire de ce gène chez la levure par une approche différente, avec cette fois un gène ATP9 déjà nucléaire, celui de Podospora anserina. Malgré une différence de 30% dans la séquence primaire des protéines, la protéine Atp9p de P. anserina exprimée depuis le noyau chez S. cerevisiae peut complémenter la délétion mitochondriale du gène ATP9. La levure modifiée peut former des ATP synthases hybrides ayant une bonne activité in vitro. En parallèle de cela, le travail sur P. anserina a donné lieu à une collaboration qui nous a permis d'en savoir un peu plus sur l'expression des deux gènes ATP9 de ce champignon filamenteux. Notons que P. anserina a deux gènes ATP9, nativement nucléaires, chacun étant exprimés à des moments précis du cycle de vie de ce champignon filamenteux. Dans l'évolution, le transfert fonctionnel du gène ATP9 chez P. anserina, comme chez les mammifères, a permis l'acquisition d'un mécanisme de régulation de la quantité d'ATP synthase en fonction des conditions physiologiques de la cellule. / The endosymbiotic a-protéobacteria ancestor of mitochondria had its own genome, specifying rebounding functions, sometimes useless inside the host cell. This piece of information have been lost during the evolution, while other essential genes have in part been transferred to the nucleus of the eukaryotic cell. Nowadays, more than 95% of the mitochondrial proteins are encoded by the nucleus. We ask the question of why there is still genes remaining in the mitochondrial genome. One way to answer experimentally that question is to artificially relocalize those mitochondrial genes to the nucleus. We have tested the nuclear relocation in Saccharomyces cerevisiae. A first step consisted in deleting the mitochondrial ATP9 gene. This deletion led to multiple deleterious effects on the stability of the mitochondrial genome, its expression, on the content of the respiratory complexes, but also on the mitochondrial morphology. Previous studies, described in the literature, have failed in the nuclear relocation of ATP9 of S. cerevisiae. I succeeded in the nuclear relocation of ATP9 using an already nuclear version of the gene, that of Podospora anserina. Despite a 30% divergence of the proteic sequences, the Atp9p of P. anserina expressed from the nucleus in S. cerevisiae can complement the ATP9 deletion. The modified yeast can form hybrid ATP synthases with a rather good in vitro activity. In parallel to that work on P. anserina, this has led to a collaboration which gave us more information on the expression of ATP9 in P. anserina. It is to notify that P. anserina has two ATP9 genes, natively nuclear, each of them being expressed at different times during the life cycle of the fungus. During evolution, the functional transfer of ATP9 to the nucleus, like it is the case in mammals too, has allowed the acquisition of regulatory mechanisms to control the amount of ATP synthases depending on physiological constraints of the cell.
150

Quantitative and qualitative analyses of in-paralogs

Vershenya, Stanislav January 2010 (has links) (PDF)
In our analysis I was interested in the gene duplications, with focus on in-paralogs. In-paralogs are gene duplicates which arose after species split. Here I analysed the in-paralogs quantitatively, as well as qualitatively. For quantitative analysis genomes of 21 species were taken. Most of them have vastly different lifestyles with maximum evolutionary distance between them 1100 million years. Species included mammals, fish, insects and worm, plus some other chordates. All the species were pairwised analysed by the Inparanoid software, and in-paralogs matrix were built representing number of in-paralogs in all vs. all manner. Based on the in-paralogs matrix I tried to reconstruct the evolutionary tree using in-paralog numbers as evolutionary distance. If all 21 species were used the resulting tree was very far from real one: a lot of species were misplaced. However if the number was reduced to 12, all of the species were placed correctly with only difference being wrong insect and fish clusters switched. Then to in-paralogs matrix the neighbour-net algorithm was applied. The resulting "net" tree showed the species with fast or slow duplications rates compared to the others. We could identify species with very high or very low duplications frequencies and it correlates with known occurrences of the whole genome duplications. As the next step I built the graphs for every single species showing the correlation between their in-paralogs number and evolutionary distance. As we have 21 species, graph for every species is built using 20 points. Coordinates of the points are set using the evolutionary distance to that particular species and in-paralogs number. In mammals with increasing the distance from speciation the in-paralogs number also increased, however not in linear fashion. In fish and insects the graph close to zero is just the same in mammals' case. However, after reaching the evolutionary distances more than 800 million years the number of inparalogs is beginning to decrease. We also made a simulation of gene duplications for all 21 species and all the splits according to the fossil and molecular clock data from literature. In our simulation duplication frequency was minimal closer to the past and maximum in the near-present time. Resulting curves had the same shape the experimental data ones. In case of fish and insect for simulation the duplication rate coefficient even had to be set negative in order to repeat experimental curve shape. To the duplication rate coefficient in our simulation contribute 2 criteria: gene duplications and gene losses. As gene duplication is stochastical process it should always be a constant. So the changing in the coefficient should be solely explained by the increasing gene loss of old genes. The processes are explained by the evolution model with high gene duplication and loss ratio. The drop in number of in-paralogs is probably due to the BLAST algorithm. It is observed in comparing highly divergent species and BLAST cannot find the orthologs so precisely anymore. In the second part of my work I concentrated more on the specific function of inparalogs. Because such analysis is time-consuming it could be done on the limited number species. Here I used three insects: Drosophila melanogaster (fruit y), Anopheles gambiae (mosquito) and Apis mellifera (honeybee). After Inparnoid analyses and I listed the cluster of orthologs. Functional analyses of all listed genes were done using GO annotations and also KEGG PATHWAY database. We found, that the gene duplication pattern is unique for each species and that this uniqueness is rejected through the differences in functional classes of duplicated genes. The preferences for some classes reject the evolutionary trends of the last 350 million years and allow assumptions on the role of those genes duplications in the lifestyle of species. Furthermore, the observed gene duplications allowed me to find connections between genomic changes and their phenotypic manifestations. For example I found duplications within carbohydrate metabolism rejecting feed pattern adaptation, within photo- and olfactory-receptors indicating sensing adaptation and within troponin indicating adaptations in the development. Despite these species specific differences, found high correlations between the independently duplicated genes between the species. This might hint for a "pool" of genes preferentially duplicated. Taken together, the observed duplication patterns reject the adaptational process and provide us another link to the field of genomic zoology. / In unserer Analyse untersuchten wir Genduplikationen mit besonderem Fokus auf "Inparalogen". In-paraloge sind Genduplikationen die nach Speziazion enstehen. Diese betrachteten wir hier in einer quantitativen als auch qualitativen Messreihe. Die quantitative Analyse umfasste Genome aus insgesamt 21 Spezies. Der Großteil diese hat verschiedene Lebensgewonheiten mit eine maximalen Evolutionsdistanz von 1100 Millionen Jahren. Die Arten bestanden aus Säugetiere, Fischen, Insekten und Würmern, sowie weiteren Chordaten. Alle Arten wurden mittels der Inparanoid Software paarweise "all against all" analysiert und in in-paralog Matrizen gespeichert. Basierend auf der in-paralog Matrix versuchten wir den evolutionären Baum über die Anzahl der In-paraloge als Maß für die evolutionäre Distanz zu rekonstruiren. Bei der Betrachtung alle 21 Arten würde der Baum jedoch sehr unpräzise: viel Arten wurden falsch plaziert. Durch eine Reduktion der Anzahl auf nur 12 Spezies clusterten jedoch alle Arten richtig, nur Insekten und Fische waren vertauscht. Anschließend wurde auf die In-paralog Matrix der Neighbor-net Algorithmus angewandt. Der daraus resultierende "Netz"-Baum repräsentiert die Spezies mit schneller oder langsamer Duplikationsrate im Vergleich zu den Anderen. Wir konnten Spezies mit sehr niedriger oder sehr hoher Rate identifizieren. Dabei korrelieren die Genome mit der höheren Rate zu der Anzahl der auftauchenden Whole Genome Duplikationen. Im nächsten Schritt erstellten wir Graphen für jede einzelne Spezies die das Verhältnis zwischen der Anzahl ihrer In-paraloger zur evolutionäre Distanz anzeigen. Jeder der 21 Graphen enthält insgesamt 20 Punkte. Die Punktkoordianten repräsentiern die evolutionere Distanz auf der X-Achse zu der Anzahl In-paraloger auf der Y-Achse. Bei Säugertieren wächst mit steigender Distanz auch die Anzahl In-paraloger. Das Verhältnis ist jedoch nicht linear. Bei Fischen und Insekten ist der Graph in der Nähe des Nullpunkts gleich dem von Säugetieren. Beim Erreichen einer Distanz von mehr als 800 Millionen Jahren sinkt jedoch die Anzahl der In-paralogen. Wir haben nun zusätzlich eine Simulation der Genduplikationen für alle 21 Spezies und alle dazu gehörigen Splits durchgeführt. Die Splits wurden aus publizierten Fossilien und "Molecular Clock" Daten entnommen. In unsere Simulation stieg die Duplikationsrate mit Annäherung an die heutige Zeit. In Vergleich zu den Experimentellen Daten haben die simulierten Graphen das gleiche Aussehen. Bei Fischen und Insekten musste der Koeffizient der Duplikationsrate negiert werden um die experimentelle Kurve zu erhalten. Der Koeffizient der Duplikationsrate stützt sich dabei auf folgende 2 Kriterien: Gen-Duplikation und Gen-Verlust. Da Genduplikationen einem stochastischen Prozess folgen sollten sie immer konstant sein. Daher sind die erhöhten Genverluste alter Gene verantwortlich für die Veränderunrg dieses Koeffizienten. Die Erklärung für dieses Verhalten basiert auf dem Evolutionsmodel - mit hohem Gen-Verlust und hoher Gen Duplikation. Der Verlust der In-Paralogen enstehet wahrscheinlich durch den BLAST Algorithmus. Man beobachtet dies besonders bei sehr divergenten Arten bei dennen BLAST die Orthologen nicht mehr so präzise findet. Der zweite Teil meiner Arbeit bezieht sich auf die spezifische Funktion von In-paralogen. Da diese Analyse sehr zeitaufwendig ist konnte sie nur an einer begrenzten Anzahl von Spezies durchgeführt werden. Hier habe ich die folgenden drei Insekten verwendet: Drosophila melanogaster (Fruchtfliege), Anopheles gambiae (Moskito) und Apis mellifera (Honigbiene). Alle durch die Inparanoid-Software entstandenen Cluster wurden mit der GO Annotation und der KEGG Pathway Datenbank analyiert. Wir haben herausgefunden, dass das Gen-Duplikationsmuster für jede Spezies einzigartig ist, und dass diese Einzigartigkeit durch Funktionale Unterschiede in duplizierten Genen entsteht. Die Bevorzugung einiger Gene repräsentiert die Evolutionsgeschichte der letzten 350 Millionen Jahre und erlaubt Annahmen über die Auswirkung der Gen Duplikationen im Leben der Spezies zu treffen. Weiterhin fanden wir durch die beobachteten Genduplikationen Zusammenhänge zwischen der Genomveränderung und ihrer phenotypischen Manifestation. Beispielsweise haben wir Duplikationen innerhalb des Karbohydratestoffwechsels für die Anpassung des Essvehaltens, Photo- und Olifaktorisch Rezeptoren - für Seh- und Geruchsvermögen und Troponin - zuständig für die Muskelentwicklung gefunden. Trotz diese speziesspezifischen Unterschiede haben wir starke Korrelation zwischen unabhängig duplizierten Genen erkannt. Dies könnte ein Indikator für einen "Pool" von bevorzugt duplizierten Genen sein. Zusammengefasst stellen die beobachteten Duplikationsmuster den Evolvierungsprozess dar, und liefern eine weitere Verbindung zur genomischen Zoologie.

Page generated in 0.0867 seconds