Spelling suggestions: "subject:"evolutionary algorithms "" "subject:"mvolutionary algorithms ""
11 |
Evolutionary SchedulingDahal, Keshav P., Tan, K.C., Cowling, Peter I. January 2007 (has links)
No
|
12 |
Optimisation and computational methods to model the oculomotor system with focus on nystagmusAvramidis, Eleftherios January 2015 (has links)
Infantile nystagmus is a condition that causes involuntary, bilateral and conjugate oscillations of the eyes, which are predominately restricted to the horizontal plane. In order to investigate the cause of nystagmus, computational models and nonlinear dynamics techniques have been used to model and analyse the oculomotor system. Computational models are important in making predictions and creating a quantitative framework for the analysis of the oculomotor system. Parameter estimation is a critical step in the construction and analysis of these models. A preliminary parameter estimation of a nonlinear dynamics model proposed by Broomhead et al. [1] has been shown to be able to simulate both normal rapid eye movements (i.e. saccades) and nystagmus oscillations. The application of nonlinear analysis to experimental jerk nystagmus recordings, has shown that the local dimensions number of the oscillation varies across the phase angle of the nystagmus cycle. It has been hypothesised that this is due to the impact of signal dependent noise (SDN) on the neural commands in the oculomotor system. The main aims of this study were: (i) to develop parameter estimation methods for the Broomhead et al. [1] model in order to explore its predictive capacity by fitting it to experimental recordings of nystagmus waveforms and saccades; (ii) to develop a stochastic oculomotor model and examine the hypothesis that noise on the neural commands could be the cause of the behavioural characteristics measured from experimental nystagmus time series using nonlinear analysis techniques. In this work, two parameter estimation methods were developed, one for fitting the model to the experimental nystagmus waveforms and one to saccades. By using the former method, we successfully fitted the model to experimental nystagmus waveforms. This fit allowed to find the specific parameter values that set the model to generate these waveforms. The types of the waveforms that we successfully fitted were asymmetric pseudo-cycloid, jerk and jerk with extended foveation. The fit of other types of nystagmus waveforms were not examined in this work. Moreover, the results showed which waveforms the model can generate almost perfectly and the waveform characteristics of a number of jerk waveforms which it cannot exactly generate. These characteristics were on a specific type of jerk nystagmus waveforms with a very extreme fast phase. The latter parameter estimation method allowed us to explore whether the model can generate horizontal saccades of different amplitudes with the same behaviour as observed experimentally. The results suggest that the model can generate the experimental saccadic velocity profiles of different saccadic amplitudes. However, the results show that best fittings of the model to the experimental data are when different model parameter values were used for different saccadic amplitude. Our parameter estimation methods are based on multi-objective genetic algorithms (MOGA), which have the advantage of optimising biological models with a multi-objective, high-dimensional and complex search space. However, the integration of these models, for a wide range of parameter combinations, is very computationally intensive for a single central processing unit (CPU). To overcome this obstacle, we accelerated the parameter estimation method by utilising the parallel capabilities of a graphics processing unit (GPU). Depending of the GPU model, this could provide a speedup of 30 compared to a midrange CPU. The stochastic model that we developed is based on the Broomhead et al. [1] model, with signal dependent noise (SDN) and constant noise (CN) added to the neural commands. We fitted the stochastic model to saccades and jerk nystagmus waveforms. It was found that SDN and CN can cause similar variability to the local dimensions number of the oscillation as found in the experimental jerk nystagmus waveforms and in the case of saccade generation the saccadic variability recorded experimentally. However, there are small differences in the simulated behaviour compared to the nystagmus experimental data. We hypothesise that these could be caused by the inability of the model to simulate exactly key jerk waveform characteristics. Moreover, the differences between the simulations and the experimental nystagmus waveforms indicate that the proposed model requires further expansion, and this could include other oculomotor subsystem(s).
|
13 |
Enabling rapid iterative model design within the laboratory environmentClayton, Thomas F. January 2009 (has links)
This thesis presents a proof of concept study for the better integration of the electrophysiological and modelling aspects of neuroscience. Members of these two sub-disciplines collaborate regularly, but due to differing resource requirements, and largely incompatible spheres of knowledge, cooperation is often impeded by miscommunication and delays. To reduce the model design time, and provide a platform for more efficient experimental analysis, a rapid iterative model design method is proposed. The main achievement of this work is the development of a rapid model evaluation method based on parameter estimation, utilising a combination of evolutionary algorithms (EAs) and graphics processing unit (GPU) hardware acceleration. This method is the primary force behind the better integration of modelling and laboratorybased electrophysiology, as it provides a generic model evaluation method that does not require prior knowledge of model structure, or expertise in modelling, mathematics, or computer science. If combined with a suitable intuitive and user targeted graphical user interface, the ideas presented in this thesis could be developed into a suite of tools that would enable new forms of experimentation to be performed. The latter part of this thesis investigates the use of excitability-based models as the basis of an iterative design method. They were found to be computationally and structurally simple, easily extensible, and able to reproduce a wide range of neural behaviours whilst still faithfully representing underlying cellular mechanisms. A case study was performed to assess the iterative design process, through the implementation of an excitability-based model. The model was extended iteratively, using the rapid model evaluation method, to represent a vasopressin releasing neuron. Not only was the model implemented successfully, but it was able to suggest the existence of other more subtle cell mechanisms, in addition to highlighting potential failings in previous implementations of the class of neuron.
|
14 |
Genetické algoritmy řízené MCTS / Genetic Algorithms driven by MCTSHavránek, Štěpán January 2016 (has links)
Evolutionary and genetic algorithms are problem-solving methods designed according to a nature inspiration. They are used for solving hard problems that we cannot solve by any efficient specialized algorithm. The Monte Carlo method and its derivation the Monte Carlo Tree Search (MCTS) are based on sampling and are also commonly used for too complex problems, where we are dealing with enormous memory consumption and it is impossible to perform a complete searching. The goal of this thesis is to design a general problem solving method that is built from these two completely different approaches. We explain and implement the new method on one example problem: the Traveling salesman problem (TSP). Second part of this thesis contains various tests and experiments. We compare different settings and parametrizations of our method. The best performing variant is then compared with the classical evolutionary TSP solution or, for example, with greedy algorithms. Our method shows competitive results. The best results were achieved with the cooperation of our method and the classical evolutionary TSP solution. This union shows better results than any of its parts separately, which we find as a great success.
|
15 |
Graph Clustering by Means of Evolutionary Algorithms / Graph Clustering by Means of Evolutionary AlgorithmsKohout, Jan January 2012 (has links)
Partitioning nodes of a graph into clusters according to their simi- larities can be a very useful but complex task of data analysis. Many dierent approaches and algorithms for this problem exist, one of the possibilities is to utilize genetic algorithms for solving this type of task. In this work, we analyze dierent approaches to clustering in general and in the domain of graphs. Several clustering algorithms based on the concept of genetic algorithm are proposed and experimentally evaluated. A server application that contains implementations of the these algorithms was developed and is attached to this thesis.
|
16 |
Innovation as a complex adaptive systemEngler, Joseph John 01 May 2009 (has links)
Innovation has long been considered crucial for companies to gain a competitive edge in the global marketplace. Unfortunately, a solid understanding of the system of innovation does not exist. The literature lacks formal definitions and methodologies for the system of innovation. Many surrogates for innovation metrics have been posited in past research but none have solidified the overall concept of an innovation system or science.
It has been speculated that innovation as a system is complex. Additionally, some researchers have suggested that this innovation system is adaptive. In these instances, of the literature, surrogates were again utilized in place of solid modeling and hypothesis that is benchmarked against real world case studies. Surrogates, such as patent citation, do serve a useful purpose to assist in the understanding of the historic nature of the innovation system but they fall short of defining the system completely.
This paper seeks to aid in the solidification of a hypothesis of the system of innovation as a complex adaptive system. Initial consideration is directed towards the historic interactions that have taken place in the system of innovation. These interactions are viewed through the surrogate of patent citation as there is little other record of innovation. The novelty of this paper is that patent citations form not the core but rather a starting point for the definition of innovation as a complex adaptive system.
Various models are built using techniques of cellular automata as well as agent-based modeling to assist in the understanding of the principles at work in the innovation system. These models present startling evidence that there exists an upper bound on the number of interactions any one invention should utilize in its course towards being deemed an innovation. Additionally, the models describe the benefits of partnership between innovating entities in a rapidly changing marketplace such as the current technological markets. This paper asserts specific conclusions, from the models, that assist in understanding that the system of innovation is truly a complex adaptive system. The models are further supported through real world examples.
|
17 |
Application of evolutionary algorithms to engineering designHayward, Kevin January 2008 (has links)
The efficiency of the mechanical design process can be improved by the use of evolutionary algorithms. Evolutionary algorithms provide a convenient and robust method to search for appropriate design solutions. Difficult non-linear problems are often encountered during the mechanical engineering design process. Solutions to these problems often involve computationally-intensive simulations. Evolutionary algorithms tuned to work with a small number of solution iterations can be used to automate the search for optimal solutions to these problems. An evolutionary algorithm was designed to give reliable results after a few thousand iterations; additionally the scalability and the ease of application to varied problems were considered. Convergence velocity of the algorithm was improved considerably by altering the mutation-based parameters in the algorithm. Much of this performance gain can be attributed to making the magnitude of the mutation and the minimum mutation rates self-adaptive. Three motorsport based design problems were simulated and the evolutionary algorithm was applied to search for appropriate solutions. The first two, a racing-line generator and a suspension kinematics simulation, were investigated to highlight properties of the evolutionary algorithm: reliability; solution representation; determining variable/performance relationships; and multiple objectives were discussed. The last of these problems was the lap-time simulation of a Formula SAE vehicle. This problem was solved with 32 variables, including a number of major conceptual differences. The solution to this optimisation was found to be significantly better than the 2004 UWA Motorsport vehicle, which finished 2nd in the 2005 US competition. A simulated comparison showed the optimised vehicle would score 62 more points (out of 675) in the dynamic events of the Formula SAE competition. Notably the optimised vehicle had a different conceptual design to the actual UWA vehicle. These results can be used to improve the design of future Formula SAE vehicles. The evolutionary algorithm developed here can be used as an automated search procedure for problems where performance solutions are computationally intensive.
|
18 |
Evolving Cuckoo Search : From single-objective to multi-objectiveLidberg, Simon January 2011 (has links)
This thesis aims to produce a novel multi-objective algorithm that is based on Cuckoo Search by Dr. Xin-She Yang. Cuckoo Search is a promising nature-inspired meta-heuristic optimization algorithm, which currently is only able to solve single-objective optimization problems. After an introduction, a number of theoretical points are presented as a basis for the decision of which algorithms to hybridize Cuckoo Search with. These are then reviewed in detail and verified against current benchmark algorithms to evaluate their efficiency. To test the proposed algorithm in a new setting, a real-world combinatorial problem is used. The proposed algorithm is then used as an optimization engine for a simulation-based system and compared against a current implementation.
|
19 |
The Effects of Using Results from Inversion by Evolutionary Algorithms to Retrain Artificial Neural NetworksHardarson, Gisli January 2000 (has links)
<p>The aim of inverting artificial neural networks (ANNs) is to find input patterns that are strongly classified as a predefined class. In this project an ANN is inverted by an evolutionary algorithm. The network is retrained by using the patterns extracted by the inversion as counter-examples, i.e. to classify the patterns as belonging to no class, which is the opposite of what the network previously did. The hypothesis is that the counter-examples extracted by the inversion will cause larger updates of the weights of the ANN and create a better mapping than what is caused by retraining using randomly generated counter-examples. This hypothesis is tested on recognition of pictures of handwritten digits. The tests indicate that this hypothesis is correct. However, the test- and training errors are higher when retraining using counter-examples, than for training only on examples of clean digits. It can be concluded that the counter-examples generated by the inversion have a great impact on the network. It is still unclear whether the quality of the network can be improved using this method.</p>
|
20 |
The evolution of modular artificial neural networksMuthuraman, Sethuraman January 2005 (has links)
This thesis describes a novel approach to the evolution of Modular Artificial Neural Networks. Standard Evolutionary Algorithms, used in this application include: Genetic Algorithms, Evolutionary Strategies, Evolutionary Programming and Genetic Programming; however, these often fail in the evolution of complex systems, particularly when such systems involve multi-domain sensory information which interacts in complex ways with system outputs. The aim in this work is to produce an evolutionary method that allows the structure of the network to evolve from simple to complex as it interacts with a dynamic environment. This new algorithm is therefore based on Incremental Evolution. A simulated model of a legged robot was used as a test-bed for the approach. The algorithm starts with a simple robotic body plan. This then grows incrementally in complexity along with its controlling neural network and the environment it reacts with. The network grows by adding modules to its structure - so the technique may also be termed a Growth Algorithm. Experiments are presented showing the successful evolution of multi-legged gaits and a simple vision system. These are then integrated together to form a complete robotic system. The possibility of the evolution of complex systems is one advantage of the algorithm and it is argued that it represents a possible path towards more advanced artificial intelligence. Applications in Electronics, Computer Science, Mechanical Engineering and Aerospace are also discussed.
|
Page generated in 0.0783 seconds