• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesozoic to Cenozoic igneous rocks from northwestern Graham Land : constraints on the tectonomagmatic evolution of the Antarctic Peninsula

Ryan, Conor January 2007 (has links)
This thesis investigates igneous rocks from northwestern Graham Land, Antarctic Peninsula, in terms of their chemistry and timing of magmatism. In northwestern Graham Land, plutonic and hypabyssal rocks of the Antarctic Peninsula batholith and volcanic rocks of the Antarctic Peninsula Volcanic Group crop out in almost equal proportions. These igneous rocks intrude and unconformably overlie low-grade metasedimentary 'basement' of the Trinity Peninsula Group (?Carboniferous to Triassic). The Mesozoic to Cenozoic subduction-related plutonic rocks range from gabbro to granite, with granodioritic compositions predominating. Mafic to intermediate hypabyssal intrusions cutting the plutonic, volcanic and 'basement' rocks are common. Major and trace element data, as well as petrographical data, from igneous rocks of the Danco Coast and Palmer Archipelago indicate a 'normal' calc-alkaline suite typical of active continental margins. Fractional crystallisation of a mafic parental magma seems to be the dominant process responsible for the range of igneous lithologies observed in the study area.
2

Early successional processes of basaltic lava ecosystems on Mt. Etna (Sicily) with additional comparative studies of Mauna Loa (Hawaii)

Carpenter, Michael P. January 2004 (has links)
Primary succession on the basaltic lava flows of Mt. Etna was studied usmg chronosequence theory to investigate the first 500 years of ecosystem development. Separate experiments were conducted to look at how plant species, nutrient availability and lichen activity on the lava changed over time under different conditions based on the site location (age, aspect and altitude on the volcano). By comparing the results of these different areas of study, close links were observed between soil development and nutrient availability. Lichens were found to be an important stage in primary succession introducing biomass to form a developing soil as well as weathering the lava surface. The plant species present on the lava were found to change as plants first colonised the lava and were then replaced as further species appeared over time. Nutrient availability was investigated in living plant material by measurement of the enzyme nitrate reductase and also in the developing soil. Two large inputs of nitrogen were observed in the chronosequences. An early input believed to be lichen derived and another steadily increasing input associated with the soil. The biomass of the nitrogen fixing lichen Stereocaulofl vesuvianum on the lava flows was found to change over time with a rapid increase over the first 100 years of the chronosequence followed by a slower decline as competition and shading from vascular plants covered available habitat. S. vesuvianum was also found to be an efficient weathering agent on the lava altering the surface morphology. This weathering was observed qualitatively by detailed visual examination of the lava surface by scanning electron microscopy. Weathering was also measured quantitatively using an intelligent machine vision computer system, to collate the surface changes of many images simultaneously and compare surface change to a baseline chronosequence, allowing discrimination of fine differences in the extent of weathering. Two of the experiments conducted on Mt. Etna (nitrate reductase activity and lichen weathering) were repeated on a second volcano, Mauna Loa (Hawaii). This tested if the trends observed on Etna were typical of primary succession on lava and the impact of a different climate regime (tropical) compared to Etna (temperate). Nitrate reductase activity was found to be very low in the primary colonising species studied on Hawaii indicating that nitrogen is limited on the early lava flows. Lichen weathering by Stereocaulon vulcani on Hawaii was found to occur in a comparable manner to S. vesuvianum on Etna, and was similarly controlled by the lichen biomass and associated climatic conditions.
3

The Mid-Ordovician oolitic ironstones of North Wales

Trythall, Robert J. B. January 1988 (has links)
Oolitic ironstones occur within the Lower Palaeozoic Welsh Basin as isolated deposits found over a wide geographical area. There are two phases of ironstone deposition, a minor Upper Arenig phase and a Mid-Ordovician (Upper Llanvirn to basal Caradoc) phase. Both correlate with eustatic falls of sea level which exposed the Irish Sea Landmass lying immediately to the northwest. This exposure resulted in deep chemical weathering and generation of lateritic soils. Erosion of this material formed the source for the oolitic' ironstones in the Welsh Basin. The ironstones formed above stratigraphic hiatuses on sediment starved shallow water shoals, formed by synsedimentary faulting. These shoals were the favourable sites for the formation of berthierine peloids, which formed the nuclei for ooids. Additionally, they were also the site for the accumulation of berthierine mud, which was closely linked with the development of ferruginous algal mats. Bacterial reduction of organic material associated with ironstones, supplied the necessary reducing conditions for the formation and preservation of berthierine from a kaolinite/iron oxide precursor. Ooids formed by rolling over the muddy surface and mechanically accreting berthierine. Subsequent tidal current reworking of this sediment resulted in the formation of the characteristic lithological features of the ironstones, representing a shallowing-up sequence. Progressive current winnowing led to the formation of a sequence with an upward increasing ooid content and decreasing mud content. The upper facies of the ironstones is an ooid bar deposit worked by tidal currents. Cessation of current reworking allowed faunal colonisation of the bar with significant bioturbation of the sediment, destroying primary sedimentary structures. The presence of some grain-ironstones indicate the original sedimentary state of the upper facies. Tectonic instability during deposition, by synsedimentary faulting, resulted in the formation of disturbed ironstones, and debris flows within the ironstone sequences. Many features of the ironstones are diagenetic in origin, especially the formation of phosphate nodules within the ironstone sequence. These formed just below the sediment/sea water interface, and some nodules were reworked into overlying beds. The source was phosphorus released from adsorption on clays and iron oxides, and also released from organic material. Later siderite development in the ironstones is indicated by the presence of primary cements in grain-ironstones and secondary alterations in pack-ironstones. The generation of diagenetic siderite was dependant upon the amount of organic material within the ironstones, bacterial reduction of which resulted in the formation of bicarbonate and ferrous ions. Sane ironstones were subsequently altered during the Caradoc phase of volcanic activity. The formation of magnetite and stilpnomelane within the ironstones were caused by metasanatic activity associated with dolerite sills and microgranite intrusions. Siderite alteration and base metal sulphides resulted fram late stage hydrothermal activity by some microgranites. Contact metarrorphism by granophyric intrusions led to the extensive replacement of the ironstones by pyrite. Regional metarrorphism resulted in the progressive change of berthierine to chamosite and increased lattice ordering of chamosite.
4

Magnetic and sedimentological analyses of quaternary lake sediments from the English Lake District

McLean, Donald C. H. January 1991 (has links)
Results of mineral magnetic, mobile clement, and granulometric analyses of Holocene sediments from Buttermere and Crummock Water (two closely-linked lakes in the north-west of the English Lake District) are presented. These are used to: (1) identify effects of internal (lacustrine) and external (catchment) controls on sedimentation; (2) establish catchment source-lake sediment linkages and assess the value of mineral magnetic techniques in palaeolimnological studies; (3) identify major catchment environmental changes. Analyses of lake sediment fabrics (using sediment thin sections, SEM clay flake analysis, standard granulometric analysis, and mineral magnetic indicators of grain size change) indicate that river plume sedimentation is the normal sediment dispersal mechanism in these lakes. Thin (< = 3.0 mm) chlorite-rich laminae, found at intervals in the otherwise homogeneous Holocene sediment sequence, are probably formed by trapping and concentration of fine, platy particles within lake waters. They are subsequently deposited during lake overturn. This represents an "internal" control on sedimentation. A model of sedimentation processes operating in these lakes is developed, incorporating river plume sedimentation, episodic density surges, and lake thermal structure. Mineral magnetic measurements allow the objective subdivision of the lacustrine lithostratigraphy, identifying broad changes in lake sediment characteristics. Samples from both lake catchments are clustered into six magnetically distinct groups - despite the lithological complexity of the catchment. Comparison of these with the lake sediments has enabled identification of major sources during the Holocene. Following deposition of relatively unaltered bedrock-derived material during the Late-glacial ("primary" sources), secondary sources (which may include glacial diamicts, soils and stream sediments) dominate the lake sediments. Direct input of topsoil-derived sediment from circa 1000 A.D. onwards (during and following the main period of Norse settlement of the Lake District) is identified by its distinctive mineral magnetic characteristics, (high Xfd% values, >-4%). Industrially-derived magnetic spherules contribute significantly to the mineral magnetic characteristics of the more recent sediments, (mainly those post-dating circa 1900 A.D.). These are used to construct a proxy chronology for recent sediments. Catchment environmental changes arc mainly related to stabilisation of vegetation following deglaciation and, from circa 2,000 B.P., anthropogenic effects of deforestation and land disturbance, thus increasing lake sediment accumulation rates. These findings are broadly consistent with the interpretation of the Lake District Post-glacial sediment sequence presented in studies by Mackereth, (1966a), and Pennington, (1981), demonstrating a uniformity of lake and catchment development within the Lake District. A prominent minerogenic layer present in the Buttermere and Crummock Water sediment sequence however broadly correlates with similar horizons deposited in other Lake District lakes from circa 7,400 - 5,000 B.P. These have been previously interpreted as composed of topsoil-derived material derived from human actions, (Pennington 1973, 1981). In the Buttermere and Crummock Water sediments, this layer is best interpreted as derived from glaciogenic sediment') reworked from within the lake basins, probably following lowered lake water levels during the period circa 7,300 - 5,300 B.P. Thus it is suggested that a reinterpretation of similar Lake District lacustrine sediments using the methods employed in this study would be appropriate.
5

Field and experimental studies of pyroclastic density currents and their associated deposits

Ritchie, Lucy Jane January 2001 (has links)
The transport and emplacement mechanisms of the highly energetic pyroclastic density current (PDC) generated in the blast style eruption of Soufriere Hills Volcano, Montserrat, on 26 December 1997 are examined through detailed lithological mapping and sedimentological analysis of the deposits. The PDC formed deposits which range in grain size from coarse breccias to fine ash, with distinctive bipartite layering and well-developed grading and stratification. On a large scale the PDC was highly erosive, sculpting large bedforms and depositing relatively thin deposits. However, locally, centimetre scale topographic protuberances were responsible for significant variations in deposit thickness, grain size, and the development of dune bedforms. The strong lateral and vertical lithofacies variations are attributed to well-developed density stratification, which formed during explosive expansion of the dome prior to PDC formation. Experimental modelling of stratified inertial gravity currents was carried out to investigate the effects of density stratification prior to release of the current. The degree of stratification governs the rate of mixing in the current, which in turn influences the velocity. Well·stratified currents initially move faster than homogenous currents but are slower in the latter stages of current propagation. The results have important implications for deposition from particle-laden flows, which may become stratified with coarser material concentrated at the base of the current. The role of PDCs jn the formation of unit US2-B, emplaced during the Upper Scoriae 2 eruption (79± 8 ka) on Santorini, Greece, was investigated through sedimentological analysis and mapping. Proximally, the unit exhibits features characteristic of emplacement from a flow, such as thickening into palaeochannels and erosive basal contacts. Distally, the unit is of uniform thickness and grain size parameters suggest the deposit is more characteristic of exnplacement from a fallout mechanism. Discrete lenses of fine-grained material within US2-B, and a gradational upper contact with PDC deposits suggest that there may have been contemporaneous deposition resulting the development of a hybrid deposit.
6

Looking beyond eruptions for an explanation of volcanic disasters : vulnerability in volcanic environments

Dibben, Christopher J. L. January 1999 (has links)
'Natural' disasters have traditionally been viewed as the result of an extreme physical environment. A radical backlash against this dominant view, in the nineteen seventies and eighties, moved the debate to the opposite extreme and in doing so replaced physical with social determinism. Vulnerability analysis is proposed as a methodology that bridges these extremes. It takes into account individual decision making, social milieu and physical hazard when describing human habitation in areas of volcanic activity. It is argued that vulnerability should be defined in terms of universal human needs in order to avoid it simply being a measure of the chance of death and injury or losing its meaning in the uncertainty of cultural relativism. Once vulnerability is identified it is important to explore why it has come to exist. A contextual theory of vulnerability change is presented. Vulnerability to volcanic activity was explored in the area around Mt. Etna in Sicily (Italy) and Furnas volcano San Miguel in the Azores (Portugal) using a case study methodology. This included: collecting data through interviews (semistructured and structured) and field surveying, utilising census and other secondary data sources, and examining historical documents and texts. The volcanic hazard on Mt. Etna is related to regular (4-7 years) effusive lava flows which threaten property and land rather than people. Living in a European state, it is likely that a victim of Mt. Etna will have their basic needs provided for in the long-term and therefore they are not vulnerable. In contrast the irregular explosive eruptions of Furnas, last eruption 1630, not only damage property and land but also endanger lives. The limited ability of individuals to protect themselves in the event of an eruption and organisations to aid them in this means that, in spite of state insurance, many around Furnas are vulnerable. The production of vulnerability around Etna and Furnas is strongly related to the socio-economic nature of the region and wider European and global contexts. Opportunities and constraints that exist across socio-physical space encourage behaviour and forms of life which, in tum, produce various levels of vulnerability. Individuals seem to cognitively diminish their perceptions of this threat within a context of social representations of low risk. They, and society as a whole, rarely seem to engage directly with the risk itself.
7

The volcaniclastic deposits of the main caldera and the evolution of the Galluccio Tuff of Roccamonfina volcano, Southern Italy

Cole, Paul David January 1990 (has links)
The south-west portion of the main caldera was mapped and a stratigraphy for the caldera-fill was constructed. The exact timing of formation of the main caldera is unclear; However, caldera collapse either predates or was synchronous with the eruption of the Campagnola Tuff. The proximal facies of the Campagnola Tuff exists as a complex relation of ignimbrite, lithic breccia and pyroclastic surge deposits. Overlying this the Galluccio Tuff a compound ignimbrite, ~6 km3 D.R.E, forms the base of the exposed caldera fill. Caldera lakes then became well established and following activity was predominantly phreatomagmatic. Pyroclastic surge deposits possess sand wave structures of several types and their migration direction was apparently controlled by the velocity/flow regime of the surge rather than the moisutre content. The morphology of juvenile clasts from phreatomagmatic deposits indicates that the eruptions were driven by a combination of vesiculation and magma/water interaction. The uppermost pyroclastic deposits are thought to represent the early phase of dome building where water still had access to the vent. The construction of the lava domes brought activity to a close within the main caldera. The Galluccio Tuff on the flanks of the volcano may be divided into three compositionally distinct eruptive units. The Lower Galluccio Tuff, correlated with the bulk of the Galluccio Tuff filling the main caldera. The Middle Galluccio Tuff commenced with the eruption of pumice-rich pyroclastic flows followed by flows enriched in both the size and amount of lithic fragments forming lithic-rich ignimbrite and co-ignimbrite lithic breccias of which several types exist. The Upper Galluccio Tuff is composed of lithic-rich ignimbrite which possess dense pumice fragments and are thought to be the product of a combination of both vesiculation and magma water interaction. Field relations indicate that pyroclastic flows were sometimes generated in quick succession and may have overrun earlier slower moving flows. Occasionally internal shear may have caused the overriding of portions of the same flow, these often coincide with lithic breccias and represent the climax of the eruptive phases. The grading of lithic fragments indicates that the expansion and fluidization decreased and yield strength increased with time in a pyroclastic flow.

Page generated in 0.0511 seconds