• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 393
  • 77
  • 75
  • 35
  • 15
  • 13
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • Tagged with
  • 829
  • 560
  • 147
  • 136
  • 88
  • 82
  • 75
  • 73
  • 58
  • 53
  • 52
  • 50
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

NMR studies of protein dynamics and structure

Ådén, Jörgen January 2010 (has links)
Enzymes are extraordinary molecules that can accelerate chemical reactions by several orders of magnitude. With recent advancements in structural biology together with classical enzymology the mechanism of many enzymes has become understood at the molecular level. During the last ten years significant efforts have been invested to understand the structure and dynamics of the actual catalyst (i. e. the enzyme). There has been a tremendous development in NMR spectroscopy (both hardware and pulse programs) that have enabled detailed studies of protein dynamics. In many cases there exists a strong coupling between enzyme dynamics and function. Here I have studied the conformational dynamics and thermodynamics of three model systems: adenylate kinase (Adk), Peroxiredoxin Q (PrxQ) and the structural protein S16. By developing a novel chemical shift-based method we show that Adk binds its two substrates AMP and ATP with an extraordinarily dynamic mechanism. For both substrate-saturated states the nucleotide-binding subdomains exchange between open and closed states, with the populations of these states being approximately equal. This finding contrasts with the traditional view of enzyme-substrate complexes as static low entropy states. We are also able to show that the individual subdomains in Adk fold and unfold in a non-cooperative manner. This finding is relevant from a functional perspective, since it allows a change in hydrogen bonding pattern upon substrate-binding without provoking global unfolding of the entire enzyme (as would be expected from a two-state folding mechanism). We also studied the structure and dynamics of the plant enzyme PrxQ in both reduced and oxidized states. Experimentally validated structural models were generated for both oxidation states. The reduced state displays unprecedented μs-ms conformational dynamics and we propose that this dynamics reflects local and functional unfolding of an α-helix in the active site. Finally, we solved the structure of S16 from Aquifex aeolicus and propose a model suggesting a link between thermostability and structure for a mesophilic and hyperthermophilic protein pair. A connection between the increased thermostability in the thermophilic S16 and residual structure in its unfolded state was discovered, persistent at high denaturant concentrations, thereby affecting the difference in heat capacity difference between the folded and unfolded state. In summary, we have contributed to the understanding of protein dynamics and to the coupling between dynamics and catalytic activity in enzymes.
382

Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

Wang, Ivan January 2013 (has links)
<p>This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities - structural and geometry - were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional experimental models were designed such that the wing segments may be rotated while the system is in the wind tunnel. The fold angles were changed during wind tunnel testing, and new test data on wing response during those transients were collected during these experiments.</p> / Dissertation
383

Funktionelle und proteinbiochemische Charakterisierung von Fibin

Seyer, Christian 04 April 2013 (has links) (PDF)
Im Zebrafisch (Danio rerio) ist ein Protein identifiziert worden, das eine wichtige Rolle in der Entwicklung der Brustflossen zu besitzen scheint und als Fibin, dem englischen Akronym für Fin bud initiation factor (Flossenknospeninitiationsfaktor), bezeichnet wurde. Es zeigt keine Verwandtschaft zu anderen bekannten Proteinen, enthält keine typischen Strukturmotive, wird auf nur einem Exon kodiert und ist in allen bisher untersuchten Vertebraten, einschließlich des Menschen, evolutionär hoch konserviert. Ziel der vorliegenden Arbeit war die nähere funktionelle und proteinbiochemische Charakterisierung Fibins. In vielen Geweben adulter Mäuse (Mus musculus), v. a. in zerebralen und muskulären Proben, konnte Fibin mRNA nachgewiesen werden. Im Vergleich zum Adultus war die Expression in Geweben pränataler Mäuse bedeutend höher und unterschied sich in der Region der Vordergliedmaßen kaum von der im Torso. In L929 (Fibroblasten) und HEK Zellen (embryonale Nierenzellen) wurde eine hohe Expression von Fibin nachgewiesen, die in L929 Zellen durch Glukokortikoide und Aktivatoren des Proteinkinase C / MAP-Kinase , Proteinkinase A sowie des NF-κB / AP-1 bzw. Nrf2 / ARE Signalwegs erhöht werden konnte. Die nicht-proteinkodierende 5‘ Region des humanen Fibin Gens zeigte im Luciferase Reporterassay in L929 und HEK Zellen promotogene Eigenschaften, mit einem Aktivitätsmaximum der Sequenz – 836 Basenpaare bezogen auf den Translationsstartpunkt. In L929 Zellen wurde die promotogene Aktivität durch Glukokortikoide und Aktivatoren des Proteinkinase C / MAP-Kinase- sowie des NF κB / AP 1 bzw. Nrf2 / ARE Signalwegs erhöht. Fibin besitzt eine putative N terminale Signalsequenz und eine N Glykosylierungsstelle, die beide experimentell bestätigt wurden. Rekombinantes Fibin zeigte in der Fluoreszenzmikroskopie in COS-7 Zellen (Fibroblasten) eine hohe Kolokalisation mit dem Endoplasmatischen Retikulum, jedoch nur eine geringe mit dem Golgi Apparat. In COS-7 Zellen wurde es nicht über den sekretorischen Weg freigesetzt und zeigte in proteinbiochemischen Untersuchungen eine hohe Tendenz zur Aggregation und Ausbildung von Disulfidbrücken. Es ist anzunehmen, dass Fibin möglicherweise ein bisher unbekanntes Protein für die Ausbildung von Heteromeren benötigt, um erfolgreich sezerniert zu werden.
384

Functional Analysis of the Thiol Oxidoreductase ERp57 and its Role in the Biogenesis of MHC Class I Molecules

Zhang, Yinan 23 February 2010 (has links)
Class I major histocompatibility complex molecules present antigenic peptides to cytotoxic T lymphocytes, which leads to the elimination of virus infected cells. Class I molecules are heterotrimers consisting of a heavy chain, a light chain termed beta2-microglobulin, and a peptide ligand. Assembly of class I molecules begins in the endoplasmic reticulum where the heavy chain associates with beta2-microglobulin, and the heavy chain-beta2-microglobulin heterodimers enter a peptide loading complex where class I molecules acquire peptides. During the biogenesis of class I molecules, ERp57, a thiol oxidoreductase, associates with free class I heavy chains and, at a later stage, with the peptide loading complex. In this thesis, I show for the first time that ERp57 participates in oxidative folding of the heavy chain. Depletion of ERp57 by RNAi delayed heavy chain disulfide bond formation and slowed folding of the heavy chain alpha3 domain. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no such effect. Since ERp57 associates with the lectin-chaperones calnexin and calreticulin, it is thought that ERp57 requires these chaperones to gain access to its substrates. To test this idea, I examined class I biogenesis in cells lacking calnexin or calreticulin or that express an ERp57 mutant that fails to bind to these chaperones. Remarkably, heavy chain disulfides formed at the same rate in these cells as in wild type cells, suggesting that ERp57 has the capacity to recognize its substrates directly in addition to being recruited through lectin-chaperones. ERp57 also forms a mixed disulfide with tapasin within the peptide loading complex and I found that the formation of this mixed disulfide is independent of its interaction with calnexin and calreticulin. I also found that calreticulin could be recruited into the peptide loading complex in the absence of interactions with both ERp57 and substrate oligosaccharides, demonstrating the importance of its polypeptide-binding site in substrate recognition. Finally, by inactivating the redox active sites of ERp57, I demonstrate that its enzymatic activity is dispensable in stabilizing the loading complex and in supporting efficient peptide loading. Thus, ERp57 plays a structural rather than catalytic role within the peptide loading complex.
385

Free Energy Landscape of Protein-like Chains Interacting under Discontinuous Potentials

Bayat Movahed, Hanif 05 January 2012 (has links)
The free energy landscape of a protein-like chain is constructed from exhaustive simulation studies using a combination of discontinuous molecular dynamics and parallel tempering methods. The protein model is a repeating sequence of four kinds of monomers, in which hydrogen bond attraction, electrostatic repulsion, and covalent bond vibrations are modeled by step, shoulder and square-well potentials, respectively. These protein-like chains exhibit a helical structure in their folded states. The model allows a natural definition of a configuration by considering which beads are bonded. In the absence of a solvent, the relative free energy of dominant structures is determined from the relative populations, and the probabilities predicted from the calculated free energies are found to be in excellent agreement with the observed probabilities at different temperatures. The free energy landscape of the protein-like chain is analyzed and confirmed to have funnel-like characteristics, confirmed by the fact that the probability of observing the most common configuration approaches unity at low enough temperatures for chains with fewer than 30 beads. The effect on the free energy landscape of an explicit square-well solvent, where the beads that can form intra-chain bonds can also form (weaker) bonds with solvent molecules while other beads are insoluble, is also examined. Simulations for chains of 15, 20 and 25 beads show that at low temperatures, the most likely structures are collapsed helical structures. The temperature at which collapsed helical structures become dominant is higher than in the absence of a solvent. Finally, the dynamics of the protein-like chain immersed in an implicit hard sphere solvent is studied using a simple model in which the implicit solvent interacts on a fast time scale with the chain beads and provides sufficient friction so that the motion of monomers is governed by the Smoluchowski equation. Using a Markovian model of the kinetics of transitions between conformations, the equilibration process from an ensemble of initially extended configurations to mainly folded configurations is investigated at low effective temperatures for a number of different chain lengths. It was observed that folding profiles appear to be single exponentials and independent of temperature at low temperatures.
386

Disulfide Bond Formation: Identifying Roles of PDI Family Thiol Oxidoreductases and ER Oxidant Pathways

Rutkevich, Lori Ann 19 December 2012 (has links)
Protein disulfide isomerases (PDIs) catalyze the oxidation and isomerization of disulfide bonds in proteins passing through the endoplasmic reticulum (ER). Although as many as 20 enzymes are classified as PDI family members, their relative contributions to protein folding have remained an open question. Additionally, Ero1 has been characterized as the ER oxidase that transfers oxidizing equivalents from oxygen to PDI enzymes. However, knockout mice lacking the mammalian Ero1 isoforms, Ero1Lα and Ero1Lβ, are viable, and the role of other potential ER oxidases in maintaining an oxidative ER environment is now an important issue. By systematic depletion of ER PDI family members and potential ER oxidases and assessment of disulfide bond formation of secreted endogenous substrates, I have outlined the functional relationships among some of these enzymes. PDI family member depletion revealed that PDI, although not essential for complete disulfide bond formation in client proteins, is the most significant catalyst of oxidative folding. In comparison, ERp57 acts preferentially on glycosylated substrates, ERp72 functions in a more supplementary capacity, and P5 has no detectable role in formation of disulfide bonds for the substrates assayed. Initially, no impact of depletion of Ero1 was observed under steady state conditions, suggesting that other oxidase systems are working in parallel to support normal disulfide bond formation. Subsequent experiments incorporating a reductive challenge revealed that Ero1 depletion produces the strongest delay in re-oxidation of the ER and oxidation of substrate. Depletion of two other potential ER oxidases, peroxiredoxin 4 (PRDX4) and Vitamin K epoxide reductase (VKOR), showed more modest effects. Upon co-depletion of Ero1 and other oxidases, additive effects were observed, culminating in cell death following combined removal of Ero1, PRDX4, and VKOR activities. These studies affirm the predominant roles of Ero1 in ER oxidation processes and, for the first time, establish VKOR as a significant contributor to disulfide bond formation.
387

Using Protein Design to Understand the Role of Electrostatic Interactions on Calcium Binding Affinity and Molecular Recognition

Jones, Lisa Michelle 04 August 2008 (has links)
Calcium regulates many biological processes through interaction with proteins with different conformational, dynamic, and metal binding properties. Previous studies have shown that the electrostatic environment plays a key role in calcium binding affinity. In this research, we aim to dissect the contribution of the electrostatic environment to calcium binding affinity using protein design. Many natural calcium binding proteins undergo large conformational changes upon calcium binding which hampers the study of these proteins. In addition, cooperativity between multiple calcium binding sites makes it difficult to study site-specific binding affinity. The design of a single calcium binding site into a host system eliminates the difficulties that occur in the study of calcium binding affinity. Using a computer algorithm we have rationally designed several calcium binding sites with a pentagonal bipyramidal geometry in the non-calcium dependent cell adhesion protein CD2 (CD2-D1) to better investigate the key factors that affect calcium binding affinity. The first generation proteins are all in varying electrostatic environments. The conformational and metal binding properties of each of these designed proteins were analyzed. The second generation designed protein, CD2.6D79, was designed based on criteria learned from the first generation proteins. This protein contains a novel calcium binding site with ligands all from the â-strands of the non-calcium dependent cell adhesion protein CD2. The resulting protein maintains native secondary and tertiary packing and folding properties. In addition to its selectivity for calcium over other mono and divalent metal ions, it displays strong metal binding affinities for calcium and its analogues terbium and lanthanum. Furthermore, our designed protein binds CD48, the ligand binding partner of CD2, with an affinity three-fold stronger than CD2. The electrostatic potential of the calcium binding site was modified through mutation to facilitate the study of the effect of electrostatic interactions on calcium binding affinity. Several charge distribution mutants display varying metal binding affinities based on their charge, distance to the calcium binding site, and protein stability. This study will provide insight into the key site factors that control calcium binding affinity and calcium dependent biological function.
388

Free Energy Landscape of Protein-like Chains Interacting under Discontinuous Potentials

Bayat Movahed, Hanif 05 January 2012 (has links)
The free energy landscape of a protein-like chain is constructed from exhaustive simulation studies using a combination of discontinuous molecular dynamics and parallel tempering methods. The protein model is a repeating sequence of four kinds of monomers, in which hydrogen bond attraction, electrostatic repulsion, and covalent bond vibrations are modeled by step, shoulder and square-well potentials, respectively. These protein-like chains exhibit a helical structure in their folded states. The model allows a natural definition of a configuration by considering which beads are bonded. In the absence of a solvent, the relative free energy of dominant structures is determined from the relative populations, and the probabilities predicted from the calculated free energies are found to be in excellent agreement with the observed probabilities at different temperatures. The free energy landscape of the protein-like chain is analyzed and confirmed to have funnel-like characteristics, confirmed by the fact that the probability of observing the most common configuration approaches unity at low enough temperatures for chains with fewer than 30 beads. The effect on the free energy landscape of an explicit square-well solvent, where the beads that can form intra-chain bonds can also form (weaker) bonds with solvent molecules while other beads are insoluble, is also examined. Simulations for chains of 15, 20 and 25 beads show that at low temperatures, the most likely structures are collapsed helical structures. The temperature at which collapsed helical structures become dominant is higher than in the absence of a solvent. Finally, the dynamics of the protein-like chain immersed in an implicit hard sphere solvent is studied using a simple model in which the implicit solvent interacts on a fast time scale with the chain beads and provides sufficient friction so that the motion of monomers is governed by the Smoluchowski equation. Using a Markovian model of the kinetics of transitions between conformations, the equilibration process from an ensemble of initially extended configurations to mainly folded configurations is investigated at low effective temperatures for a number of different chain lengths. It was observed that folding profiles appear to be single exponentials and independent of temperature at low temperatures.
389

Functional Analysis of the Thiol Oxidoreductase ERp57 and its Role in the Biogenesis of MHC Class I Molecules

Zhang, Yinan 23 February 2010 (has links)
Class I major histocompatibility complex molecules present antigenic peptides to cytotoxic T lymphocytes, which leads to the elimination of virus infected cells. Class I molecules are heterotrimers consisting of a heavy chain, a light chain termed beta2-microglobulin, and a peptide ligand. Assembly of class I molecules begins in the endoplasmic reticulum where the heavy chain associates with beta2-microglobulin, and the heavy chain-beta2-microglobulin heterodimers enter a peptide loading complex where class I molecules acquire peptides. During the biogenesis of class I molecules, ERp57, a thiol oxidoreductase, associates with free class I heavy chains and, at a later stage, with the peptide loading complex. In this thesis, I show for the first time that ERp57 participates in oxidative folding of the heavy chain. Depletion of ERp57 by RNAi delayed heavy chain disulfide bond formation and slowed folding of the heavy chain alpha3 domain. Interestingly, depletion of another thiol oxidoreductase, ERp72, had no such effect. Since ERp57 associates with the lectin-chaperones calnexin and calreticulin, it is thought that ERp57 requires these chaperones to gain access to its substrates. To test this idea, I examined class I biogenesis in cells lacking calnexin or calreticulin or that express an ERp57 mutant that fails to bind to these chaperones. Remarkably, heavy chain disulfides formed at the same rate in these cells as in wild type cells, suggesting that ERp57 has the capacity to recognize its substrates directly in addition to being recruited through lectin-chaperones. ERp57 also forms a mixed disulfide with tapasin within the peptide loading complex and I found that the formation of this mixed disulfide is independent of its interaction with calnexin and calreticulin. I also found that calreticulin could be recruited into the peptide loading complex in the absence of interactions with both ERp57 and substrate oligosaccharides, demonstrating the importance of its polypeptide-binding site in substrate recognition. Finally, by inactivating the redox active sites of ERp57, I demonstrate that its enzymatic activity is dispensable in stabilizing the loading complex and in supporting efficient peptide loading. Thus, ERp57 plays a structural rather than catalytic role within the peptide loading complex.
390

Towards Adaptive Resolution Modeling of Biomolecular Systems in their Environment

Lambeth, Bradley 06 September 2012 (has links)
Water plays a critical role in the function and structure of biological systems. Current techniques to study biologically relevant events that span many length and time scales are limited by the prohibitive computational cost of including accurate effects from the aqueous environment. The aim of this work is to expand the reach of current molecular dynamics techniques by reducing the computational cost for achieving an accurate description of water and its effects on biomolecular systems. This work builds from the assumption that the “local” effect of water (e.g. the local orientational preferences and hydrogen bonding) can be effectively modelled considering only the atomistic detail in a very limited region. A recent adaptive resolution simulation technique (AdResS) has been developed to practically apply this idea; in this work it will be extended to systems of simple hydrophobic solutes to determine a characteristic length for which thermodynamic, structural, and dynamic properties are preserved near the solute. This characteristic length can then be used for simulation of biomolecular systems, specifically those involving protein dynamics in water. Before this can be done, current coarse grain models must be adapted to couple with a coarse grain model of water. This thesis is organized in to five chapters. The first will give an overview of water, and the current methodologies used to simulate water in biological systems. The second chapter will describe the AdResS technique and its application to simple test systems. The third chapter will show that this method can be used to accurately describe hydrophobic solutes in water. The fourth chapter describes the use of coarse grain models as a starting point for targeted search with all-atom models. The final chapter will describe attempts to couple a coarse grain model of a protein with a single-site model for water, and it’s implications for future multi-resolution studies.

Page generated in 0.0315 seconds