• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 34
  • 34
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
The increased concentration of greenhouse gases in theatmosphere, in particular CO2, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO2emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO2emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO2reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO2reduction, appears to be low. The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO2emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO2reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO2reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO2emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO2. Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO2aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season. <b>Keywords:</b>CO2reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.
22

Rational bioenergy utilisation in energy systems and impacts on CO2emissions

Wahlund, Bertil January 2003 (has links)
<p>The increased concentration of greenhouse gases in theatmosphere, in particular CO<sub>2</sub>, is changing the Earth’s climate. Accordingto the Kyoto protocol, where the international community agreedon binding emission targets, developed countries are committedto reduce their greenhouse gas emissions. The increased use ofbiomass in energy systems is an important strategy to reduce CO<sub>2</sub>emissions. The purpose of this thesis has been toanalyse the opportunities for Sweden to further reduce CO<sub>2</sub>emissions in the energy system, by rationallyutilising woody biomass energy. The characteristics of currentcommercially operating biofuel-based CHP plants in Sweden aresurveyed and systematically presented. A consistent andtransparent comprehensive reference base for system comparisonsis given. Furthermore, the fuel effectiveness and contributionto CO<sub>2</sub>reduction is calculated. The governmentalsubsidies of the CHP plants’investment, expressed as costof specific CO<sub>2</sub>reduction, appears to be low.</p><p>The competitiveness of biomass-fuelled energy production inrelation to fossil-based production with carbon capture isanalysed, showing that the biomass-fuelled systems provide acompetitive option, in terms of cost of electricity andefficiencies. The remaining Swedish woody biofuel potential ofat least 100 PJ/yr is principally available in regions with abiomass surplus. Transportation is therefore required to enableits utilisation in a further national and international market.Refining the biofuel feedstock to pellets, or even furtherrefining to motor fuels (DME, methanol or ethanol) or power,could facilitate this transport. Different options for fuelrefining are studied and compared. The entire fuel chain, fromfuel feedstock to end users, is considered and CO<sub>2</sub>emissions are quantified. Substituting fuelpellets for coal appears to be the most costeffectivealternative and shows the largest CO<sub>2</sub>reduction per energy unit biofuel. Motor fuelsappear more costly and give about half the CO<sub>2</sub>reduction. Transportation of the upgraded biofuelpellets is highly feasible from CO<sub>2</sub>emissions point of view and does not constitute ahindrance for further utilisation, i.e. the pellets can betransported over long distances efficiently with only limitedemissions of CO<sub>2</sub>.</p><p>Bioenergy utilisation has additional features forenvironmental improvement, apart from the CO<sub>2</sub>aspect. Waste heat from biofuel-based CHP can becost-effectively used in conjunction with sewage treatment. Theincoming sewage water to the nitrification process can bepreheated with the waste heat, and thereby substantiallyenhance the nitrification and the reduction of ammoniumnitrogen during the winter season.</p><p><b>Keywords:</b>CO<sub>2</sub>reduction, energy system, biofuel, CHP, refining,fuel pellets, ethanol, methanol, DME, fuel substitution, sewagewater, nitrification.</p>
23

Determinação experimental de taxas de reação no 238U e 235U ao longo do raio da pastilha de UO2 do reator IPEN/MB-01 / Experimental determination of nuclear reaction rates in 238U and 235U along of the radius of fuel pellets of the IPEN/MB-01 reactor

Mura, Luís Felipe Liambos 06 November 2015 (has links)
Este trabalho apresenta e consolida uma metodologia alternativa para a determinação de taxas de reação nuclear ao longo da direção radial das pastilhas combustíveis sem necessidade de intensos fluxos neutrônicos. Esta técnica se baseia na irradiação de um disco de UO2 inserido no interior de uma vareta combustível desmontável no núcleo do reator IPEN/MB-01. Após a irradiação são realizadas várias espectrometrias gama do disco utilizando um detector HPGe alternando sequencialmente 6 colimadores de chumbo com diâmetros diferentes. Consequentemente, as reações nucleares de captura radiativa que ocorrem nos átomos de 238U, juntamente com as fissões que ocorrem em ambos 235U e 238U são mensuradas em função de 6 regiões radiais distintas do disco combustível. As correções de eficiência geométrica devido à introdução dos colimadores no sistema de detecção HPGe são determinadas através do código MCNP-5. As medidas de taxa de fissão são realizadas utilizando o 99Mo como radionuclídeo traçador. Esse radionuclídeo foi estudado e provou-se ideal para estas medidas por possuir um comportamento linear de formação, alto rendimento de fissão e principalmente por emitir fótons de baixa energia. As medidas foram efetuadas irradiando discos de UO2 (com enriquecimento de 4,3%) na posição central do reator IPEN/MB-01 a potência de 100 Watts durante uma hora. Algumas medidas foram realizadas utilizando uma luva de cádmio envolta na vareta combustível para determinar as taxas de reação nuclear na faixa de energia epitérmica. Os resultados experimentais obtidos são comparados a cálculos de taxa de reação nuclear via MCNP-5 utilizando a biblioteca de dados ENDF/B-VII.0, os quais apresentaram discrepâncias de no máximo 9% para as taxas de captura no 238U e 14% para as taxas de fissão no U na faixa epitérmica. Foram obtidos valores máximos de 4,5% para incertezas relativas as taxas de captura total e epitérmica e para as taxas de fissão total e epitérmica valores máximos de 11,3%. / This research presents and consolidates an alternative methodology for determining nuclear reaction rates along the radial direction of the fuel pellets which does not require high neutron flux. This technique is based on irradiating a thin UO2 disk inserted into a removable fuel rod at the IPEN/MB-01 reactor core. Several gamma spectrometries are performed after irradiation using a HPGe detector. Six lead collimators with different diameters are sequentially alternated during this process, thus, the nuclear radioactive capture which occurs in 238U and the fissions which occur in both 235U and 238U are measured according to six different radial regions of the fuel disk. Geometric efficiency corrections due to the introduction of collimators in HPGe detection system are determined by MCNP-5 code. The fission rate measurements are performed using the 99Mo. This radionuclide was studied and proved ideal for these measurements because it is formed in linear behavior in the reactor core, have a high yield fission and emits low-energy photons. Measurements were performed irradiating UO2 disks (with 4.3% enrichment) in the central position of the IPEN/MB-01 core at 100 watts power level during one hour. Some measurements were performed using a cadmium glove wrapped in the fuel rod to determine the nuclear reaction rates in the epithermal energy range. The experimental results obtained are compared with nuclear reaction rate calculations by means of MCNP-5 with ENDF/B-VII.0 data library showing discrepancies of up to 9% in 238U capture rates and 14% for U fission rates for epithermal energies. Uncertainties regarding the nuclear capture rates have maximum values of 4.5% and the fission rates has maximum values of 11.3%.
24

Particulate and gaseous emissions from residential biomass combustion

Boman, Christoffer January 2005 (has links)
<p>Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PIC´s). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques.</p><p>This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures.</p><p>An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for different stoves were determined with variations in fuel, appliance and operational properties. The emissions of PIC´s as well as PM<sub>tot</sub> from wood combustion were in general shown to be considerably higher compared to pellets combustion. PAH<sub>tot</sub> emissions were determined in the range of 1300-220000 µg/MJ for wood stoves and 2-300 µg/MJ for pellet stoves with phenantrene, fluoranthene and pyrene generally found as major PAH´s. The PM emissions from present residential appliances was found to consist of significant but varying fractions of PIC´s, with emissions in the range 35-350 mg/MJ for wood stoves compared to 15-45 mg/MJ for pellet stoves. Accordingly, the use of up-graded biomass fuels, combusted under continuous and controlled conditions give advantageous combustion conditions compared to traditional batch wise firing of wood logs. The importance of high temperature in well mixed isothermal conditions was further illustrated during pellets combustion to obtain complete combustion with almost a total depletion of PIC´s. Fine (100-300 nm) particles dominated in all studied cases the PM with 80-95% as PM1. Beside varying fractions of carbonaceous material, the fine PM consisted of inorganic volatilized ash elements, mainly found as KCl, K<sub>3</sub>Na(SO<sub>4</sub>)<sub>2</sub> and K<sub>2</sub>SO<sub>4</sub> with mass concentrations at 15-20 mg/MJ during complete combustion. The importance of the behavior of alkali elements for the ash transformation and fine particle formation processes was further shown, since the stability, distributions and compositions also directly control the degree of volatilization. In addition to the alkali metals, zinc was found as an important element in fine particles from residential biomass combustion. Finally, the behaviour of volatile trace elements, e.g. Zn and Cd, during pellets production and combustion were studied. A significant enrichment in the pellet fuel during the drying process was determined. The magnitude and importance of the enrichment was, however, relative small and some alternative measures for prevention were also suggested.</p>
25

Particulate and gaseous emissions from residential biomass combustion

Boman, Christoffer January 2005 (has links)
Biomass is considered to be a sustainable energy source with significant potentials for replacing electricity and fossil fuels, not at least in the residential sector. However, present wood combustion is a major source of ambient concentrations of hydrocarbons (e.g. VOC and PAH) and particulate matter (PM) and exposure to these pollutants have been associated with adverse health effects. Increased focus on combustion related particulate emissions has been seen concerning the formation, characteristics and implications to human health. Upgraded biomass fuels (e.g. pellets) provide possibilities of more controlled and optimized combustion with less emission of products of incomplete combustion (PIC´s). For air quality and health impact assessments, regulatory standards and evaluations concerning residential biomass combustion, there is still a need for detailed emission characterization and quantification when using different fuels and combustion techniques. This thesis summarizes the results from seven different papers. The overall objective was to carefully and systematically study the emissions from residential biomass combustion with respect to: i) experimental characterization and quantification, ii) influences of fuel, appliance and operational variables and iii) aspects of ash and trace element transformations and aerosol formation. Special concern in the work was on sampling, quantification and characterization of particulate emissions using different appliances, fuels and operating procedures. An initial review of health effects showed epidemiological evidence of potential adverse effect from wood smoke exposure. A robust whole flow dilution sampling set-up for residential biomass appliances was then designed, constructed and evaluated, and subsequently used in the following emission studies. Extensive quantifications and characterizations of particulate and gases emissions were performed for residential wood and pellet appliances. Emission factor ranges for different stoves were determined with variations in fuel, appliance and operational properties. The emissions of PIC´s as well as PMtot from wood combustion were in general shown to be considerably higher compared to pellets combustion. PAHtot emissions were determined in the range of 1300-220000 µg/MJ for wood stoves and 2-300 µg/MJ for pellet stoves with phenantrene, fluoranthene and pyrene generally found as major PAH´s. The PM emissions from present residential appliances was found to consist of significant but varying fractions of PIC´s, with emissions in the range 35-350 mg/MJ for wood stoves compared to 15-45 mg/MJ for pellet stoves. Accordingly, the use of up-graded biomass fuels, combusted under continuous and controlled conditions give advantageous combustion conditions compared to traditional batch wise firing of wood logs. The importance of high temperature in well mixed isothermal conditions was further illustrated during pellets combustion to obtain complete combustion with almost a total depletion of PIC´s. Fine (100-300 nm) particles dominated in all studied cases the PM with 80-95% as PM1. Beside varying fractions of carbonaceous material, the fine PM consisted of inorganic volatilized ash elements, mainly found as KCl, K3Na(SO4)2 and K2SO4 with mass concentrations at 15-20 mg/MJ during complete combustion. The importance of the behavior of alkali elements for the ash transformation and fine particle formation processes was further shown, since the stability, distributions and compositions also directly control the degree of volatilization. In addition to the alkali metals, zinc was found as an important element in fine particles from residential biomass combustion. Finally, the behaviour of volatile trace elements, e.g. Zn and Cd, during pellets production and combustion were studied. A significant enrichment in the pellet fuel during the drying process was determined. The magnitude and importance of the enrichment was, however, relative small and some alternative measures for prevention were also suggested.
26

Comportamento termoidraulico de vareta aquecida eletricamente durante transitorio de fluxo critico de calor

LIMA, RITA de C.F. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:16Z (GMT). No. of bitstreams: 1 05031.pdf: 4962096 bytes, checksum: 39c12c06c0063abb20c1c82005ecef33 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
27

Determinação exerimental de razões espectrais e do espectro de energia dos nêutrons no combustível do reator nuclear IPEN/MB-01 / Experimental determination of spectral ratios and of neutrons energy flux in the fuel of the nuclear reactorIPEN/MB-01

NUNES, BEATRIZ G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:34:24Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:44Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
28

Comportamento termoidraulico de vareta aquecida eletricamente durante transitorio de fluxo critico de calor

LIMA, RITA de C.F. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:42:40Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:57:16Z (GMT). No. of bitstreams: 1 05031.pdf: 4962096 bytes, checksum: 39c12c06c0063abb20c1c82005ecef33 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
29

Determinação exerimental de razões espectrais e do espectro de energia dos nêutrons no combustível do reator nuclear IPEN/MB-01 / Experimental determination of spectral ratios and of neutrons energy flux in the fuel of the nuclear reactorIPEN/MB-01

NUNES, BEATRIZ G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:34:24Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:09:44Z (GMT). No. of bitstreams: 0 / Este trabalho visa determinar as razões espectrais e o espectro de energia de nêutrons no interior do combustível do Reator Nuclear IPEN/MB-01. Estes parâmetros são de grande importância para determinar com precisão parâmetros físicos de reatores nucleares, como taxas de reação, tempo de vida do combustível e também parâmetros de segurança, tais como reatividade. Para o experimento, utilizou-se detectores de ativação na forma de finas folhas metálicas, introduzidas em uma vareta combustível experimental desmontável. Em seguida, a vareta foi colocada na posição central do núcleo, que tem uma configuração retangular padrão de 26x28 varetas combustível. Foram utilizados detectores de ativação de diferentes elementos como 197Au, 238U, 45SC, 58Ni, 24Mg, 47Ti e 115In para cobrir grande parte do espectro de energia dos nêutrons. Após a irradiação, os detectores de ativação foram submetidos a espectrometria gama utilizando um sistema de contagem com Germânio hiper-puro, afim de se obter a taxa de reação (atividade de saturação) por núcleo alvo. As razões espectrais foram comparadas com valores obtidos através do método de Monte Carlo utilizando o código MCNP-4C. O espectro de energia de nêutrons foi obtido no interior da vareta combustível utilizando o código SANDBP com um espectro de entrada obtido pelo código MCNP-4C, a partir dos valores de atividade de saturação por núcleo alvo dos detectores de ativação irradiados. / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
30

Determinação experimental de taxas de reação no 238U e 235U ao longo do raio da pastilha de UO2 do reator IPEN/MB-01 / Experimental determination of nuclear reaction rates in 238U and 235U along of the radius of fuel pellets of the IPEN/MB-01 reactor

Luís Felipe Liambos Mura 06 November 2015 (has links)
Este trabalho apresenta e consolida uma metodologia alternativa para a determinação de taxas de reação nuclear ao longo da direção radial das pastilhas combustíveis sem necessidade de intensos fluxos neutrônicos. Esta técnica se baseia na irradiação de um disco de UO2 inserido no interior de uma vareta combustível desmontável no núcleo do reator IPEN/MB-01. Após a irradiação são realizadas várias espectrometrias gama do disco utilizando um detector HPGe alternando sequencialmente 6 colimadores de chumbo com diâmetros diferentes. Consequentemente, as reações nucleares de captura radiativa que ocorrem nos átomos de 238U, juntamente com as fissões que ocorrem em ambos 235U e 238U são mensuradas em função de 6 regiões radiais distintas do disco combustível. As correções de eficiência geométrica devido à introdução dos colimadores no sistema de detecção HPGe são determinadas através do código MCNP-5. As medidas de taxa de fissão são realizadas utilizando o 99Mo como radionuclídeo traçador. Esse radionuclídeo foi estudado e provou-se ideal para estas medidas por possuir um comportamento linear de formação, alto rendimento de fissão e principalmente por emitir fótons de baixa energia. As medidas foram efetuadas irradiando discos de UO2 (com enriquecimento de 4,3%) na posição central do reator IPEN/MB-01 a potência de 100 Watts durante uma hora. Algumas medidas foram realizadas utilizando uma luva de cádmio envolta na vareta combustível para determinar as taxas de reação nuclear na faixa de energia epitérmica. Os resultados experimentais obtidos são comparados a cálculos de taxa de reação nuclear via MCNP-5 utilizando a biblioteca de dados ENDF/B-VII.0, os quais apresentaram discrepâncias de no máximo 9% para as taxas de captura no 238U e 14% para as taxas de fissão no U na faixa epitérmica. Foram obtidos valores máximos de 4,5% para incertezas relativas as taxas de captura total e epitérmica e para as taxas de fissão total e epitérmica valores máximos de 11,3%. / This research presents and consolidates an alternative methodology for determining nuclear reaction rates along the radial direction of the fuel pellets which does not require high neutron flux. This technique is based on irradiating a thin UO2 disk inserted into a removable fuel rod at the IPEN/MB-01 reactor core. Several gamma spectrometries are performed after irradiation using a HPGe detector. Six lead collimators with different diameters are sequentially alternated during this process, thus, the nuclear radioactive capture which occurs in 238U and the fissions which occur in both 235U and 238U are measured according to six different radial regions of the fuel disk. Geometric efficiency corrections due to the introduction of collimators in HPGe detection system are determined by MCNP-5 code. The fission rate measurements are performed using the 99Mo. This radionuclide was studied and proved ideal for these measurements because it is formed in linear behavior in the reactor core, have a high yield fission and emits low-energy photons. Measurements were performed irradiating UO2 disks (with 4.3% enrichment) in the central position of the IPEN/MB-01 core at 100 watts power level during one hour. Some measurements were performed using a cadmium glove wrapped in the fuel rod to determine the nuclear reaction rates in the epithermal energy range. The experimental results obtained are compared with nuclear reaction rate calculations by means of MCNP-5 with ENDF/B-VII.0 data library showing discrepancies of up to 9% in 238U capture rates and 14% for U fission rates for epithermal energies. Uncertainties regarding the nuclear capture rates have maximum values of 4.5% and the fission rates has maximum values of 11.3%.

Page generated in 0.0341 seconds