Spelling suggestions: "subject:"saber"" "subject:"haber""
1 |
Die Musica poetica des Magisters Heinrich Faber /Stroux, Christoph, January 1976 (has links)
Diss.--Phil.-Fak.--Freiburg im Breisgau--Albert-Ludwigs-Universität, 1976. / Bibliogr. p. 201-213.
|
2 |
Faber, FelixNapp, Anke 13 April 2023 (has links)
No description available.
|
3 |
An exploration of the intellectual and spiritual development of Frederick William Faber (1814-1863)Wilkinson, Melissa January 2005 (has links)
No description available.
|
4 |
Localisation spectrale à l'aide des polynômes de Faber et équation de cobord / Spectrum localisation with Faber polynomials and coboundary equationDevys, Oscar 21 June 2012 (has links)
Il s'agit d'une thèse en analyse fonctionelle et théorie des opérateurs. On considère un opérateur linéaire et borné agissant sur un espace de Banach. Dans la première partie de la thèse on propose des conditions suffisantes pour que le spectre de cet opérateur soit inclus dans un domaine de Jordan. Pour cela on utilise un outil d'analyse complexe, les polynômes de Faber. La seconde partie est consacrée à l'existence de solutions à l'équation de cobord liée à l'opérateur considéré, ce problème est lié à la théorie ergodique. / This is a thesis in functional analysis and operator theory. We consider a bounded linear operator in a Banach space. In the first part, we give some conditions to ensure that the spectrum of this operator is included in a domain delimited by a Jordan curve. We use for this purpose a tool from complex analysis, the Faber polynomials. The second part is dedicated to the coboundary equation and the existence of solutions of this equation depending on the operator, this problem is dealt with an ergodic point of view.
|
5 |
Die Musica poetica des Magisters Heinrich FaberStroux, Christoph. January 1976 (has links)
Thesis--Albert Ludwig Universität, Freiburg im Breisgau. / Vita. eContent provider-neutral record in process. Description based on print version record. "Literaturverzeichnis": p. 201-213.
|
6 |
Die Musica poetica des Magisters Heinrich FaberStroux, Christoph. January 1976 (has links)
Thesis--Albert Ludwig Universität, Freiburg im Breisgau. / Vita. "Literaturverzeichnis": p. 201-213. Also issued in print.
|
7 |
Ilustración artística con marcadores Pitt artist penCastellanos, Luis 24 November 2021 (has links)
Clase maestra de ilustración artística con el Embajador de marca Faber-Castell Luis Castellanos
|
8 |
Approximation of Analytic Functions by Faber Polynomials, the Grunsky Matrix, and a Univalence CriterionFarag, Mina January 2022 (has links)
The aim of this thesis is derive a set of polynomials defined on simply connected domains, the Faberpolynomials, in which all analytic function on the domain can be uniformly approximated. Importantconcepts and theorems such as isomorphisms, automorphisms and the Riemann mapping theorem areintroduced. Examples and applications are also included. Furthermore, the thesis will aim to introducean important consequence of the Faber polynomials, the method of the Grunsky inequalities. The first section introduces important properties of analytic functions and the concept of isomor-phisms, in particular the form of all automorphisms of the unit disc will be derived. The second sectionconsiders the Riemann mapping theorem, a theorem that relates any simply connected region that is notall of ℂ to the unit disc. A proof of the theorem beginning with the Arzelá-Ascoli theorem is provided.An application in constructing harmonic functions on arbitrary simply connected regions will be pre-sented. In the third section, definitions and properties of the Faber polynomials are developed; followedby simple examples. The section concludes with a proof and example of the statement that analyticfunctions can be approximated by Faber polynomials. In the fourth and last section of the thesis, themethod of Grunsky inequalities is presented. Starting off, the Grunsky coefficients are defined using theFaber polynomials. Properties of Grunsky coefficients such as the symmetry property and the Grunskyinequalities are then derived. To conclude it will be shown that the Grunsky inequalities provide aunivalence criterion for analytic functions defined on the unit disc.
|
9 |
Sobre b-coloração de grafos com cintura pelo menos 6 / About b-coloring of graphs with waist at least 6Lima, Carlos Vinicius Gomes Costa January 2013 (has links)
LIMA, Carlos Vinicius Gomes Costa. Sobre b-coloração de grafos com cintura pelo menos 6. 2013. 60 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2013. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-11T12:13:18Z
No. of bitstreams: 1
2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-14T15:33:44Z (GMT) No. of bitstreams: 1
2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5) / Made available in DSpace on 2016-07-14T15:33:44Z (GMT). No. of bitstreams: 1
2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5)
Previous issue date: 2013 / The coloring problem is among the most studied in the Graph Theory due to its great theoretical and practical importance. Since the problem of coloring the vertices of a graph G either with the smallest amount of colors is NP-hard, various coloring heuristics are examined to obtain a proper colouring with a reasonably small number of colors. Given a graph G, the b heuristic of colouring comes down to decrease the amount of colors in a proper colouring c, so that, if all vertices of a color class fail to see any color in your neighborhood, then we can change the color to any color these vertices nonexistent in your neighborhood. Thus, we obtain a coloring c ′ with a color unless c. Irving and Molove defined the b-coloring of a graph G as a coloring where every color class has a vertex that is adjacent the other color classes. These vertices are called b-vertices. Irving and Molove also defined the b-chromatic number as the largest integer k, such that G admits a b-coloring by k colors. They showed that determine the value of the b-chromatic number of any graph is NP-hard, but polynomial for trees. Irving and Molove also defined the m-degree of a graph, which is the largest integer m(G) such that there are m(G) vertices with degree at least m(G) − 1. Irving and Molove showed that the m-degree is an upper limit to the b-chromatic number and showed that it is m(T) or m(T)−1 to every tree T, where its value is m(T) if, and only if, T has a good set. In this dissertation, we analyze the relationship between the girth, which is the size of the smallest cycle, and the b-chromatic number of a graph G. More specifically, we try to find the smallest integer g ∗ such that if the girth of G is at least g ∗ , then the b-chromatic number equals m(G) or m(G)−1. Show that the value of g ∗ is at most 6 could be an important step in demonstrating the famous conjecture of Erd˝os-Faber-Lov´asz, but the best known upper limit to g ∗ is 9. We characterize the graphs whose girth is at least 6 and not have a good set and show how b-color them optimally. Furthermore, we show how b-color, also optimally, graphs whose girth is at least 7 and not have good set. / O problema de coloração está entre os mais estudados dentro da Teoria dos Grafos devido a sua grande importância teorica e prática. Dado que o problema de colorir os vértices de um grafo G qualquer com a menor quantidade de cores é NP-difícil, várias heurísticas de coloração são estudadas a fim de obter uma coloração própria com um número de cores razoavelmente pequeno. Dado um grafo G, a heurística b de coloração se resume a diminuir a quantidade de cores utilizadas em uma coloração própria c, de modo que, se todos os vértices de uma classe de cor deixam de ver alguma cor em sua vizinhança, então podemos modificar a cor desses vértices para qualquer cor inexistente em sua vizinhança. Dessa forma, obtemos uma coloração c′ com uma cor a menos que c. Irving e Molove definiram a b-coloração de um grafo G como uma coloração onde toda classe de cor possui um vértice que é adjacente as demais classes de cor. Esses vértices são chamados b-vértices. Irving e Molove também definiram o número b-cromático como o maior inteiro k tal que G admite uma b-coloração por k cores. Eles mostraram que determinar o número b-cromático de um grafo qualquer é um problema NP-difícil, mas polinomial para árvores. Irving e Molove também definiram o m-grau de um grafo, que é o maior inteiro m(G) tal que existem m(G) vértices com grau pelo menos m(G)−1. Irving e Molove mostraram que o m-grau é um limite superior para número b-cromático e mostraram que o mesmo é igual a m(T) ou a m(T)−1, para toda árvore T, onde o número b-cromático é igual a m(T) se, e somente se, T possui um conjunto bom. Nesta dissertação, verificamos a relação entre a cintura, que é o tamanho do menor ciclo, e o número b-cromático de um grafo G. Mais especificamente, tentamos encontrar o menor inteiro g∗ tal que, se a cintura de G é pelo menos g∗, então o número b-cromático é igual a m(G) ou m(G)−1. Mostrar que o valor de g∗ é no máximo 6 poderia ser um passo importante para demonstrar a famosa Conjectura de Erdós-Faber-Lovasz, mas o melhor limite superior conhecido para g∗ é 9. Caracterizamos os grafos cuja cintura é pelo menos 6 e não possuem um conjunto bom e mostramos como b-colori-los de forma ótima. Além disso, mostramos como bicolorir, também de forma ótima, os grafos cuja cintura é pelo menos 7 e não possuem conjunto bom.
|
10 |
Sobre b-coloraÃÃo de grafos com cintura pelo menos 6 / About b-coloring of graphs with waist at least 6Carlos Vinicius Gomes Costa Lima 25 February 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / The coloring problem is among the most studied in the Graph Theory due to its great theoretical and practical importance. Since the problem of coloring the vertices of a graph G either
with the smallest amount of colors is NP-hard, various coloring heuristics are examined to obtain a proper colouring with a reasonably small number of colors.
Given a graph G, the b heuristic of colouring comes down to decrease the amount of colors
in a proper colouring c, so that, if all vertices of a color class fail to see any color in your
neighborhood, then we can change the color to any color these vertices nonexistent in your
neighborhood. Thus, we obtain a coloring c
′ with a color unless c.
Irving and Molove defined the b-coloring of a graph G as a coloring where every color class
has a vertex that is adjacent the other color classes. These vertices are called b-vertices. Irving
and Molove also defined the b-chromatic number as the largest integer k, such that G admits a
b-coloring by k colors. They showed that determine the value of the b-chromatic number of any
graph is NP-hard, but polynomial for trees.
Irving and Molove also defined the m-degree of a graph, which is the largest integer m(G)
such that there are m(G) vertices with degree at least m(G) − 1. Irving and Molove showed
that the m-degree is an upper limit to the b-chromatic number and showed that it is m(T) or
m(T)−1 to every tree T, where its value is m(T) if, and only if, T has a good set.
In this dissertation, we analyze the relationship between the girth, which is the size of the
smallest cycle, and the b-chromatic number of a graph G. More specifically, we try to find
the smallest integer g
∗
such that if the girth of G is at least g
∗
, then the b-chromatic number
equals m(G) or m(G)−1. Show that the value of g
∗
is at most 6 could be an important step in
demonstrating the famous conjecture of Erd˝os-Faber-LovÂasz, but the best known upper limit to
g
∗
is 9. We characterize the graphs whose girth is at least 6 and not have a good set and show
how b-color them optimally. Furthermore, we show how b-color, also optimally, graphs whose
girth is at least 7 and not have good set. / O problema de coloraÃÃo està entre os mais estudados dentro da Teoria dos Grafos devido
a sua grande importÃncia teorica e prÃtica. Dado que o problema de colorir os vÃrtices de um
grafo G qualquer com a menor quantidade de cores à NP-difÃcil, vÃrias heurÃsticas de coloraÃÃo
sÃo estudadas a fim de obter uma coloraÃÃo prÃpria com um nÃmero de cores razoavelmente
pequeno.
Dado um grafo G, a heurÃstica b de coloraÃÃo se resume a diminuir a quantidade de cores
utilizadas em uma coloraÃÃo prÃpria c, de modo que, se todos os vÃrtices de uma classe de cor
deixam de ver alguma cor em sua vizinhanÃa, entÃo podemos modificar a cor desses vÃrtices
para qualquer cor inexistente em sua vizinhanÃa. Dessa forma, obtemos uma coloraÃÃo c′ com
uma cor a menos que c.
Irving e Molove definiram a b-coloraÃÃo de um grafo G como uma coloraÃÃo onde toda
classe de cor possui um vÃrtice que à adjacente as demais classes de cor. Esses vÃrtices sÃo
chamados b-vÃrtices. Irving e Molove tambÃm definiram o nÃmero b-cromÃtico como o maior
inteiro k tal que G admite uma b-coloraÃÃo por k cores. Eles mostraram que determinar o
nÃmero b-cromÃtico de um grafo qualquer à um problema NP-difÃcil, mas polinomial para Ãrvores. Irving e Molove tambÃm definiram o m-grau de um grafo, que à o maior inteiro m(G) tal
que existem m(G) vÃrtices com grau pelo menos m(G)−1. Irving e Molove mostraram que o m-grau à um limite superior para nÃmero b-cromÃtico e mostraram que o mesmo à igual a m(T)
ou a m(T)−1, para toda Ãrvore T, onde o nÃmero b-cromÃtico à igual a m(T) se, e somente se,
T possui um conjunto bom.
Nesta dissertaÃÃo, verificamos a relaÃÃo entre a cintura, que à o tamanho do menor ciclo,
e o nÃmero b-cromÃtico de um grafo G. Mais especificamente, tentamos encontrar o menor
inteiro g∗ tal que, se a cintura de G à pelo menos g∗, entÃo o nÃmero b-cromÃtico à igual a
m(G) ou m(G)−1. Mostrar que o valor de g∗ Ã no mÃximo 6 poderia ser um passo importante
para demonstrar a famosa Conjectura de ErdÃs-Faber-Lovasz, mas o melhor limite superior
conhecido para g∗ à 9. Caracterizamos os grafos cuja cintura à pelo menos 6 e nÃo possuem um
conjunto bom e mostramos como b-colori-los de forma Ãtima. AlÃm disso, mostramos como bicolorir,
tambÃm de forma Ãtima, os grafos cuja cintura à pelo menos 7 e nÃo possuem conjunto
bom.
|
Page generated in 0.0443 seconds