• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 226
  • 23
  • 22
  • 19
  • 18
  • 12
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 481
  • 205
  • 183
  • 170
  • 166
  • 116
  • 80
  • 68
  • 45
  • 45
  • 42
  • 37
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Riot helmet shells with continuous reinforcement for improved protection

Zahid, Bilal January 2011 (has links)
The present research aims to develop a novel technique for creation of composite riot helmet shells with reinforcing fibre continuity for better protection against low velocity impacts. In this research an innovative, simple and effective method of making a single-piece continuously textile reinforced helmet shell by vacuum bagging has been established and discussed. This technique also includes the development of solid collapsible moulding apparatus from non-woven fibres. Angle-interlock fabric due to its good mouldability, low shear rigidity and ease of production is used in this research. Several wrinkle-free single- piece composite helmet shells have been manufactured. Low-velocity impact test on the continuously reinforced helmet shells has been carried out. For this purpose an in-house helmet shell testing facility has been developed. Test rig has been designed in such a way that the impact test can be carried out at different locations at the riot helmet shell. Low-velocity impact test has been successfully conducted on the developed test rig. The practical experimentation and analysis revealed that the helmet shell performance against impact is dependent on the impact location. The helmet shell top surface has better impact protection as compared to helmet shell side and back location. Moreover, the helmet shell side is the most at risk location for the wearer. Finite Element models were created and simulated in Abaqus software to investigate the impact performance of single-piece helmet shells at different impact locations. Models parts have been designed in Rhinoceros software. Simulated results are validated by the experimental result which shows that the helmet top position is the safest position against an impact when it is compared to helmet back and helmet side positions.
362

Análise numérica e experimental de falhas em juntas de materiais compósitos tipo single-lap fixadas por parafusos escareados / Numerical and experimental analysis of a single lap countersunk composite fastened joint

Gonçalves, Kim Martineli Souza 03 June 2015 (has links)
Este trabalho trata das falhas que podem ocorrer em uniões e juntas de materiais compósitos unidas mecanicamente por parafusos. O compósito de fibra de carbono (tecido) embutido em resina epoxy foi estudado neste trabalho devido ao amplo uso em estruturas de vários segmentos da indústria. O trabalho apresenta vários critérios de falha, demonstrando as vantagens e desvantagens de cada um para materiais compósitos. A fabricação dos corpos de provas e os ensaios necessários para obtenção de parâmetros e validação de estruturas são descritos. A resistência da junta mostrou-se muito menor do que a da estrutura de compósito, demonstrando a importância de estudos assim. Criou-se um modelo numérico utilizando critérios de falhas como o critério de Hashin e o de máxima tensão. Os resultados da simulação de elementos finitos tiveram uma boa relação com os ensaios experimentais e o modelo foi então validado e considerado representativo. / This work shows failures that can occur in composite mechanically fastened joints. The composite carbon fiber embedded in epoxy resin, used in this study, was chosen due to it\'s wide use in structures of any segment of the industry. Many failure criteria, showing the advantages and disadvantages for each, regarding composite structures are presented in this work. Test specimens\' manufacturing is described along with required tests for parameter definition and structures validation. The countersunk fastened joint strength is much lower than the composite structure itself, demonstrating the necessity of studies like this. A numerical model using criteria like Hashin and maximum stress was created. The finite elements\' simulation results had a close response to the experimental results and the model was validated and considered representative.
363

The Development of Computational Methods and Device Design Considerations Towards Improving Transcatheter Heart Valve Engineering

Heitkemper, Megan January 2020 (has links)
No description available.
364

Rotordynamic Analysis of Theoretical Models and Experimental Systems

Naugle, Cameron R 01 April 2018 (has links)
This thesis is intended to provide fundamental information for the construction and analysis of rotordynamic theoretical models, and their comparison the experimental systems. Finite Element Method (FEM) is used to construct models using Timoshenko beam elements with viscous and hysteretic internal damping. Eigenvalues and eigenvectors of state space equations are used to perform stability analysis, produce critical speed maps, and visualize mode shapes. Frequency domain analysis of theoretical models is used to provide Bode diagrams and in experimental data full spectrum cascade plots. Experimental and theoretical model analyses are used to optimize the control algorithm for an Active Magnetic Bearing on an overhung rotor.
365

Simulační analýza nosiče předního kola formulového vozidla / Formula Car Front Wheel Carrier Simulation Analysis

Gach, Jakub January 2019 (has links)
This Master’s thesis is focused on the suspension of the front wheel, more accurately for specific part, upright. It describes the basic requirements for construction, distribution of uprights, their method of production and types of materials used. It briefly mentions topology optimization and its two optimization methods. Also deals with vehicle dynamics for driving conditions – standing vehicle, braking and cornering. In the practical part, the work is focused on determining the load effects on the upright during the aforementioned driving conditions using MBS software. At the end of the work, FEM stress and deformation analyses are performed for loading on the wheel side and on the suspension side, which are then compared and evaluated.
366

Algoritmizace návrhu počátečního tvaru membránových konstrukcí a jejich statická a dynamická analýza / Algorithms for design and analysis of membrane structures

Lang, Rostislav January 2019 (has links)
Předkládaná práce se zabývá problematikou navrhování membránových konstrukcí, a to především s ohledem na vývoj potřebných výpočetních nástrojů v rámci MKP programů. Po uvedení základních fyzikálních požadavků jednotlivých kroků při navrhování těchto konstrukcí budou dále prezentovány vybrané či navržené algoritmy. Kapitola form finding se zabývá analýzou tvaru membránových konstrukcí. Rovnovážný tvar je odvozen od požadavku na výsledné předpětí, specifikované okrajové podmínky a aplikované zatížení. Obecně se ale tento proces zabývá i samotným hledáním rovnovážné soustavy sil v prostoru. V důsledku této skutečnosti jsou součástí popisované analýzy také vhodné stabilizační metody. V této kapitole budou prezentovány jak zvolené postupy, tak i navržená stabilizační technika specializovaná na hledání tvarů kuželových membrán. Dále je také popsán navržený algoritmus pro řešení úloh optimalizujících tvary ohybově tuhých konstrukcí, které jsou spjaty s hledáním labilních rovnovážných konfigurací. Kapitola structural analysis je zaměřená především na fenomén vrásnění membrán. Tato náhlá ztráta stability silně ovlivňuje statickou i dynamickou odezvu membránových konstrukcí. V rámci této kapitoly je představena a verifikována navržená výpočetní metoda, modulárně aplikovatelná na lineární, nelineárně elastické i plastické materiály používané pro uvedené konstrukce. Kapitola cutting pattern generation se zabývá výpočtem střihových vzorů, nezbytných pro výrobní proces membránových konstrukcí. Pro tento proces je v rámci předkládané práce navržena kombinace dvou různých metod. Zvolená posloupnost algoritmů cílí na optimalizaci poměru rychlosti, obecnosti a přesnosti výpočtu. Zmíněné kapitoly jsou doplněny jednotlivými příklady, analyzovanými pomocí popisovaných algoritmů, které demonstrují konkrétní fyzikální problémy či nezbytné implementační procesy.
367

Výpočtová analýza oka ramene nápravy osobního automobilu / Computational analysis of a car axle arm opening

Procházka, Vojtěch January 2021 (has links)
This thesis is focused on behavior of control arm opening with bushing pressed in. The tested component is a part of control arm of a car. The parts were tested in tensile and compressive strength. Real experiments were measured by optical system Aramis during the testing to determine deformations of the part. These tests are also modeled by a finite element method using an Abaqus software. In GOM Correlate software is created full-field comparison of deformation results from Aramis and FEA. Based on this comparison computational model is calibrated. Sensitivity analysis is performed at the end of the thesis.
368

Manufacture of Complex Geometry Component for Advanced Material Stiffness

Bydalek, David Russell 01 March 2018 (has links)
The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental testing. The senior project was designed, led, and managed by the author with support from the committee chair. Finite element modeling was refined using data from coupon 3-point bend testing to improve estimates on material properties. These properties were fed into a prototype part model which predicted deflection of composite parts with different layups and materials. The results of the model were compared to experimental results from prototype part testing and 3rd party analysis. The results showed that an accurate mid-plane shell element model could be used to accurately predict deflection for 2 of 3 experimental parts. There are recommendations in the thesis to further validate the models and experimental testing.
369

Design of Structural Stand for High-Precision Optics Microscopy

Novell, Sara T 01 June 2020 (has links)
Lawrence Livermore National Lab (LLNL) is home to the National Ignition Facility (NIF), the world’s largest and most energetic laser. Each of the 192 beamlines contains dozens of large optics, which require offline damage inspection using large, raster-scanning microscopes. The primary microscope used to measure and characterize the optical damage sites has a precision level of 1 µm. Mounted in a class 100 clean room with a raised tile floor, the microscope is supported by a steel stand that structurally connects the microscope to the concrete ground. Due to ambient vibrations experienced in the system, the microscope is only able to reliably reach a 10-µm level of precision. As NIF’s technology advances, there is a need to both increase optic measurement throughput and to measure damage sites at a higher level of precision. As a result, there is to be another microscope mounted into another clean room lab at LLNL. To assure the microscope can meet its specified level of precision, the stand on which it is mounted was designed to meet the rigorous Environmental Vibrational Criteria standards, or VC curves. Through the collection of random vibrational data using accelerometers and Power Spectral Density (PSD) analysis, the stand was designed to meet the VC-C curve requirement of velocities below 12.5 µm/sec. Furthermore, the stand design was optimized to avoid resonance at common vibrational signatures throughout the frequency spectrum, placing its first natural frequency at a sufficiently high level to minimize amplification.
370

Využití optimalizačních algoritmů při návrhování konstrukcí / Using Optimization's Algorithms by Designing of Structures

Fedorik, Filip Unknown Date (has links)
The application of optimization algorithms in the design of many economical and industrial problems currently represents a significant assignment. The development of high-powered computers allows an application of difficult mathematical techniques and physical phenomena to simulate real problems with sufficient accuracy. The optimization techniques used in engineering designs are mostly represented by modified mathematical programming methods with extension of their usability. The aim of the presented thesis "Using Optimization´s Algorithms by Designing of Structures" is to analyze the applicability of optimization procedures which are available in the widely used computing system ANSYS in civil and mechanical engineering practice. The numerical analyses were performed within the frame of multi-extreme, one to three dimensional optimization problems, multi-dimensional problems expressed by minimizing the weight of a truss beam and efficient design of air gap location in wooden studs from the point of view of thermal features of the structure. The analyzed optimization processes are in plurality verified with accurate manual computing and graphical solutions and the accent is put on optimization methods´ possibilities to improve robustness, efficiency and accuracy of the optimization algorithms in civil engineering problems´ designs. The optimization methods represent a suitable approach to improve the efficient design of a wide range of civil and mechanical engineering structures and elements. By combination of their advantages and FEM/FEA method it is possible to achieve very good results, although robustness of the solutions is not guaranteed. The robustness and accuracy of the procedure could be increased by competent exploration of design space and suitable selections of optimization methods´ features.

Page generated in 0.0658 seconds